
A Natural Click Interface for AR Systems with a Single Camera

Atsushi Sugiura*

University of Yamanashi

Masahiro Toyoura
†

University of Yamanashi

Xiaoyang Mao
‡

University of Yamanashi

(a) Configuration of the prototype system. (b) Typing on a virtual keyboard. (c) Operating a virtual object by clicking a

position in the real world.

Figure 1: Overview of the proposed interface. A user wears a head-mounted display with a single camera. He clicks virtual buttons in the air

with his finger.

ABSTRACT

Clicking on a virtual object is the most fundamental and important
interaction in augmented reality (AR). However, existing AR
systems do not support natural click interfaces, because head-
mounted displays with only one camera are usually adopted to
realize augmented reality and it is difficult to recognize an
arbitrary gesture without accurate depth information. For the ease
of detection, some systems force users to make unintuitive
gestures, such as pinching with the thumb and forefinger. This
paper presents a new natural click interface for AR systems.
Through a study investigating how users intuitively click virtual
objects in AR systems, we found that the speed and acceleration
of fingertips provide cues for detecting click gestures. Based on
our findings, we developed a new technique for recognizing
natural click gestures with a single camera by focusing on
temporal differentials between adjacent frames. We further
validated the effectiveness of the recognition algorithm and the
usability of our new interface through experiments.

Keywords: Wearable system, Augmented reality, Gesture
recognition, Mobile application.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems Artificial, augmented, and
virtual realities; I. 2. 10 [Artificial intelligence]: Vision and Scene
Understanding Motion

1 INTRODUCTION

In this paper, we propose a natural input interface for AR systems.
Figure 1(a) shows the configuration of a prototype system with
the proposed interface. It consists of a HMD display and one

single camera. The camera is assumed to be installed around the
user’s eyes and to face outwards along the view direction. A user
can use his hand to directly operate a virtual object in the
augmented environment shown on the HMD screen. Figure 1(b) is
the HMD screen snapshot of the user typing on a virtual keyboard
with his finger. Figure 1(c) demonstrates the application of the
new interface to a game in which the user can move a virtual
object by clicking a position in the real world, which is captured
by the camera.

With the widespread adoption of smartphones and other
camera-installed mobile devices, AR technology has become an
important part of many practical applications and services. Google
announced that the long-awaited Google GLASS [1] will become
available for sale in early 2014, which is expected to further boost
the dissemination of AR devices. Google GLASS provides a see-
through display in front of an eye and a camera facing outwards,
capturing the real world. However, it relies on voice recognition
and a small touch panel input for command execution. A more
natural interface for such an AR system would be a gesture-based
interface, which would allow the user to interact with a virtual
object in a similar way as he or she interacts with objects with
using his or her hands in the real world. However, even with the
most state-of-the-art AR systems, this kind of true direct
manipulation, which is considered vital for the seamless
connection between the virtual world shown on the display and
the real world captured by the camera, has not been realized. A
major factor preventing existing AR systems from supporting
gesture-based direct manipulation is the difficulty of recognizing
an arbitrary gesture with a single camera, which cannot capture
accurate depth information. Although several projects developing
wearable display devices with stereo-camera [17] have been
reported recently, developing a single-camera-based AR system
remains important, especially considering the population of AR
applications on compact mobile devices, such as cellphones.

In this work, we aim to recognize natural hand gestures with a
single camera. In particular, we focus on click gestures. In a
traditional graphical interface, a click refers to the action of
placing the cursor on a target and then pressing a button on the
mouse to select an object or execute a command. It is the most
essential operation. Here, we define a click operation in a VR
system as an intuitive gesture a user would make to select a virtual
object or execute a graphically represented command. Through a

* email: g12dhl02@yamanashi.ac.jp

† email: mtoyoura@yamanashi.ac.jp

‡ email: mao@yamanashi.ac.jp

study investigating how subjects perform when they are told to
“click” virtual objects with their fingers without any instructions
or training, we found that the velocity and acceleration of fingers
provide useful cues for detecting click gestures. Based on our
findings, we defined a new motion-based model for intuitive click
gestures and developed a novel technique for recognizing such
gestures with a single camera. Our technique does not assume
controllable illuminations or an accurate 3D capturing of hand.
Therefore, it can be implemented in any AR system, including
those using mobile phones and head-mounted displays (HMDs).

The major contributions of this paper can be summarized as
follows:
 Design a novel study for investigating what an intuitive

click gesture in an AR system is.
 Introduce a new motion state transition model for

recognizing the click gestures.
 Implement two new algorithms for detecting the click

gestures in an AR system based on the motion of a finger.
 Conduct experiments for evaluating the new click interfaces

in terms of click gesture recognition performance and
intuitiveness.

The remainder of the paper is organized as follows: Section 2

introduces the related works. Section 3 describes the study.
Sections 4 and 5 present the technical details of the proposed click
interface. Section 6 describes the implementation issues and the
experiments for evaluating the proposed techniques. Section 7
concludes the paper.

2 RELATED WORKS

The creation of a natural user interface using a single camera is an
active research topic in the fields of human computer interaction
and computer vision. Projects on tangible interfaces [2-3],
tabletop interfaces [4-5], projector-camera systems [6-7], Kinect
[8] and the iPad [9] have attracted a great deal of attention.
Especially in the case of tabletop interfaces, bare-hand gesture
recognition from camera-captured images is often employed as a
tool for inputting commands. Attempts to extract hand regions
from captured images always face the challenges of self-occlusion,
unpredictable illumination, cluttered backgrounds, blurred images,
and so on. Attracted by the ease and robustness of recognition,
conventional systems employ hand-shape-based command inputs
[10] or pinching gesture detection [11], which unfortunately force
users to perform predefined gestures rather than intuitive ones.

Although hand gesture recognition is one of classic problems in
computer vision, it is still under active research. A survey of state-
of-the-art hand recognition techniques can be found in [15]. The
difficulty of hand recognition comes from 1) a deformable and
flexible object with multiple joints having a high DOF (degree of
freedom), 2) self-occlusion caused having by many joints, and 3)
skin region extraction under fluctuating illumination.

The problem of estimating a high-DOF hand posture can be
solved using textured gloves. Wang et al. [13] introduced a color
glove and tried to estimate the posture and position of fingers
from the texture of the glove. This work requires wearing textured
gloves, which may limit the range of applications.

Self-occlusion caused by multiple joints can be addressed using
multiple cameras. Multiple cameras can also reconstruct the 3D
shape of a hand, which provides more information about the
posture and position of the hand. Lee et al. [12] implemented a
system supporting the interaction between virtual objects and a
hand. In the system, skin color regions are first extracted from
captured images. The stereo cameras provide 3D hand regions and
fingertip positions. By computing the collision between the virtual
objects and the line defined by using the gravity point and the
fingertip position, the object the user is interacting with can be

detected. Recently, another research group has begun developing
a wearable display device [17] that combines a depth sensor [8]
and an HMD to support hand gestures in AR systems. These
multiple camera systems require calibration in advance.
Furthermore, such systems tend to be bulky in size.

Skin region estimation under fluctuating illumination can be
solved by progressively updating observed skin color. Kölsch et al.
[18] addressed the accuracy of skin region extraction based on the
idea of AR applications. In AR applications, cluttered
backgrounds and objects of skin-like color are often observed.
Their method can robustly extract hand regions, even in such an
environment. The same group has also proposed shape-based
hand region extraction [19-20]. Their main targets were static
gesture recognition and hand position estimation for a hand. We
adopt their intelligent skin color updating technique to detect
dynamic clicking gestures.

In this paper, we propose an interaction system with no gloves,
a single camera, and dynamic click detection. We identified a
unique motion of the fingertip when performing click gestures
through a study and developed a robust recognition technique that
involves detecting such a motion with a single camera.

3 USER STUDY

We have conducted a study to investigate what a natural click
gesture in an AR system is. Twelve subjects of varying ages (four
in their 30s, six in their 20s, and one in his or her teens) and
varying levels of computer skill participated in the experiment.
The subjects sat on a chair, wearing a video-see-through HMD
(Vuzix WRAP AR920). The resolution of the monitor is 800x600.
It has a dual-channel output, but we only used a single-channel
output. The same image is displayed on both monitors. An
additional Logicool QCam Pro 9000 camera is installed on the
HMD, which captures the video of the operating scene at a
resolution of 800x600. For the task, the subjects were asked to
“click” each of the virtual buttons once with the pointing finger of
their dominant hand (all twelve subjects were right-handed),
without any detailed instructions or training. To investigate how
3D positions and the orientation of buttons may affect click
gestures, we used two sets of virtual buttons. As shown in Figure
2(a), the first set of buttons consisted of five buttons in a cross-
shaped layout, and they were oriented so as to be parallel to the
XY plane. The second set, as shown in Figure 2(b), was oriented
in the depth (Z) direction. During the operation, the finger is
always displayed in front of the virtual buttons. No other visual,
aural, or haptic feedbacks were provided for the interaction
between the finger and a button. And no haptic feedback forced
the subject to stop the movement of their fingers in the air,
although most of the subjects commented that it would have been
better to provide some feedback indicating that the click was
completed. They also found it difficult to place their fingers on a
target button in the HMD display.

(a) Buttons parallel to XY plane. (b) Buttons along Z direction.

Figure 2: The arrangement of virtual buttons.

(a) Type 1: Pull and push.

(b) Type 2: Push and pull.

Figure 3: Click gesture by users.

To track the 3D trajectory, velocity, and acceleration of the

fingertip, we installed to capture the 3D position of fingertips with

a LeapMotion Controller [6] from LEAP Inc. on a table in front of

the seat of a user. However, due to the limited observation range,

with the radius of 50 centimetres from LeapMotion, we could

only obtain the motion data for six out of the twelve subjects. The

other six subjects performed partially out of the range during this

experiment.

To understand the common patterns involved in a click gesture,

we conducted a post-task interview with each subject. Each

subject was presented with the video of himself/herself

performing the task and asked to explain in detail the motion of

his/her finger. Based on the post-task interview and the data from

LeapMotion, we observed the following facts to be common to all

or the majority of subjects:

1. Based on the post-task interview, we found the subjects

trying to confirm that their fingertips were on top of a button
before clicking the button. The LeapMotion video also
confirmed this statement. Also see the supplemental movie to
confirm the gestures.

2. Based on the data tracked by LeapMotion, we found that the
depth at which subjects tried to click the buttons varied by
subject. Based on the post-task interview, we confirmed that
this is because the subjects could not perceive the correct
position of the buttons in terms of depth.

3. From the LeapMotion video, we observed that click gestures
are similar to but more exaggerated than a general tapping
gesture. In the interview, most subjects commented that
because there was no haptic feedback for touching a virtual
button, they tried to represent the click with an exaggerated
gesture. Specifically, they had to stop their fingers to
represent the click because there was no haptic feedback
upon touching a button. Ten subjects first raised their fingers
up, pushed down quickly, and then stopped on the button
suddenly (Figure 3(a)). Two subjects pushed their fingers
down slowly first and then raised them quickly (Figure 3(b)).

4. By analyzing the data from LeapMotion, we found that the
click gesture described in (3), including its 3D motions,
varies by subject, as well as by the position of the buttons. In
other words, it includes the motion not only in the Z direction
but also in the X and Y directions, depending on the relative
position of the button and the hand.

(a) Fingertip’s speed and its differential for Subject A.

(b) Fingertip’s speed and its differential for Subject B.

(c) Fingertip’s speed and its differential for Subject C.

(d) Fingertip’s speed and its differential for Subject D.

(e) Fingertip’s speed and its differential for Subject E.

(f) Fingertip’s speed and its differential for Subject F.

Figure 4: Fingertip’s speed and its differential in click gesture, as

tracked with LeapMotion [6].

Facts 1 and 2 suggest the necessity of providing some kind of
feedback to the user regarding the pressing of a particular virtual
button. As described in Section 1, we provide such feedback by
changing the size and color of the button pressed.

Fact 3 suggests that the speed of the fingertip is an important
cue for detecting clicks. Figure 4 shows the speed (magnitude of
velocity) ‖ ‖ and the differential of speed ̃ for the six subjects’
fingertips as tracked by LeapMotion. We observed that, when a
click occurred, the differential of speed increased first and then
dropped down drastically. We also observed a large peak in speed
around the moment of the click. Such a characteristic motion
within the gesture will help to distinguish it from other kinds of
finger motions. Fact 1 suggests that there was usually a pointing
gesture before the clicking gesture. Combining the detection of
this pointing gesture has the potential to improve the performance
of click gesture detection. Finally, Fact 4 suggests that we should
consider the velocity in 3D when computing the speed.

4 HAND AREA EXTRACTION AND FINGERTIP POSITION

ESTIMATION

Hand area extraction is necessary both for providing visual
feedback to users and for detecting the click gesture. To provide a
natural click interface, we should render the operating scene as if
the user is operating an object with his/her hand in the real world.
For this purpose, we extract the hand area from the image
captured by the camera and render it in front of the virtual objects.
To track the motion of the fingertip, we need a further estimate of
the position of the fingertip.

4.1 Hand area extraction

We extract hand area by assuming it to be the region with skin
color．Numerous other projects have already been performed
regarding skin color detection and hand region extraction.
Nevertheless, they are still problems in such cases. For example,
illumination is often uncontrollable, such as in the outdoors or a
dark place. Because developing sophisticated skin area detection
is not our main focus, we employ a classic method, a Gaussian
mixture skin color model [21], for extracting hand regions. The
use of more recent tracking-based methods [18] or shape-based
methods [20] would improve the accuracy of extracted hand
regions. Note that computational cost should remain low when
installing such methods into our system.

Assuming skin color can be represented with a single Gaussian
model in HSV color space given a representative skin color
 () , we compute the distance of each pixel from S
and extract all pixels with a distance smaller than a given
threshold. In the current implementation, we measure each
component of HSV separately. Assuming the thresholds for H, S,
and V , respectively, a pixel () is
detected to be of skin color if it satisfies all of the following three
conditions:

 (1)

 (2)

 (3)

The hand area is then detected as the largest connected component
of the extracted skin-colored pixels.

Our system provides a calibration tool that allows a user to
interactively specify an initial representative skin color and adjust
the threshold using the initial frame captured in the assumed
environment. During runtime, the hand area extracted from the
previous frame is used as the training data for the next frame.

When the hand region is not detected in a frame, the system
abandons and resets the training data. Therefore, if the user is not
satisfied with the result of the hand region extraction, he/she can
let the algorithm restart from the current frame simply by
removing his/her hand from the camera view once and then
putting it back. We detect the skin-colored pixels by computing
their Mahalanobis distance from the average color of the hand
area in the previous frame. Assuming that () is the
average and is the variance-covariance matrix of the color for
the hand area extracted in the previous frame, a pixel P of the
current frame satisfying the following condition is detected to be
of skin color:

 () () (4)

The threshold is empirically set to 0.5 in our experiment.
Using the previous frame as the training data makes the algorithm
more robust considering the dynamic changes in lighting
conditions.

As shown in Figure 5(a), depending on the lighting conditions,
the claw area may not be successfully detected and appear as a
hole in the hand area. We fill this potential hole by applying
morphological closing operations to the extracted skin-colored
area (Figure 5(b)).

4.2 Fingertip extraction

As shown in Figure 5(b), assuming the top-left corner of the
captured image as the origin of coordinates, we take the pixel with
the smallest y in the hand region as the temporarily assumed
fingertip. Such an assumption is rational because the hand is
expected to come from the bottom. Then, we draw a circle with
the temporarily assumed fingertip as the center and R (given in
advance) as the radius. We next perform a distance transformation
for the finger region enclosed in the circle (Figure 5(c)). As a
result, the pixels on the boundary of the finger region receive 0 as
their distance value, and regarding the pixels inside the region, the
farther they are from the boundary, the larger distance value they
receive. The position of the fingertip is finally estimated as the
peak of the parabola fitted curve for the distance values, as shown
in Figure 5(d).

(a) Skin area extraction. (b) Result after applying

morphological closing.

(c) Fingertip area extraction (d) Fingertip position detection.

Figure 5: Hand area detection and fingertip position estimation.

5 PROPOSED VIRTUAL CLICK INTERFACE

5.1 Motion-Based Click Model

Based on the observations from the study, we have recognized

click gestures by analyzing the motion of the fingertip. We first

classify the motion of a fingertip into one of the following four

states:

STILL: stop at a position

MOVE: move at a normal speed.

FAST: move quickly

Sudden SD: slow down suddenly

Then, a click gesture can be modeled as the state transition

diagram in Figure 6 shows. To perform a click, the user starts by

confirming the pointing at a virtual object (STILL or MOVE),

quickly raises his/her finger (FAST), and then pushes toward the

object. Finally, the speed drops suddenly (Sudden SD) before

stopping at the object (STILL).

State transitions can be detected by monitoring the fingertip’s

speed ‖ ‖ (magnititude of velocity) and the differential of the

speed ̃ based on the diagram shown in Figure 7. The transition

from STILL to MOVE can be detected by checking whether the

current speed is above a given threshold. If both ‖ ‖ and ̃
become large, then a transition from MOVE to FAST has

probably occurred. A Sudden SD is detected by checking whether

 ̃ is smaller than a given negative value. Although the current

recognition algorithm relies on choosing an appropriate threshold,

it is relative easy to find a robust threshold because ‖ ‖and ̃

show large peaks around the moment of the click, as confirmed in

the study. As mentioned in Section 6, we have implemented a

calibration tool for adapting the thresholds to individual users.
From the primary study, we have learned that the most

characteristic feature of the click motion is the Sudden SD state,
which distinguishes the click from all other motions of the finger.
Therefore, we also implemented a simpler but efficient algorithm
that recognizes a click gesture simply by detecting the Sudden SD
state.

Figure 6: The state transition of the click motion.

Figure 7: State transition diagram for detecting states of motion

5.2 Motion detection

To recognize the click gesture using the state transition diagram

given in Section 5.1, we must compute the speed and the

differential of the speed of the fingertip. As observed in the study,

a click gesture is a 3D motion that includes the movement not

only in the XY plane but also along the Z (depth) direction.

However, because we assume single-camera-based AR systems, it

is impossible to track the motion in the depth direction directly.

To solve the problem, we use the change in object size due to

perspective projection as the cue to estimate the change in the

depth direction. In particular, we use the change in finger width to

approximate the Z component of the speed and the differential of

the speed.

Denoting the position of the fingertip on the XY plane as

(,) and the width of the finger as for a frame t, the

approximate speed ‖ ‖ and the differential of speed ̃ of the

fingertip for frame t are computed as follows:

 ‖ ‖ ‖() ()‖ (5)

 ̃ ‖ ‖ ‖ ‖ (6)

Note that ‖ ‖ and ̃ are calculated as the displacement and its

differential in a unit of time. Because the acceleration, as the
secondary differential of position, is always a positive value and
there is no way to distinguish “suddenly slow down” from
“suddenly speed up” simply by computing the acceleration, we
compute ̃ as the differential of speed ‖ ‖ instead of the
differential of velocity vector and use the sign of ̃ to
distinguish “suddenly slow down” from “suddenly speed up.”
“Suddenly slow down” is indicated by a small negative ̃ . As
shown in Figure 8, is computed as the distance between the
two intersections of the finger region boundary and a circle
centered on the fingertip (,). To make the algorithm more
robust, we compute the average of the distance obtained by using
five circles of different radii.

Figure 8: Estimation of finger width.

5.3 Hand and Fingertip Detection

Without haptic feedback, it is very difficult for users to perceive
the relative position between their fingertips and virtual objects.
As observed in the study, a subject tries to confirm that his/her
fingertip is on the top of a button before performing the click.
Therefore, providing some kind of feedback to notify the user of
whether an object is ready for clicking is very important.

In traditional GUI, changing color is a commonly used
approach to providing visual feedback about pointing at an object.
In their gaze-based system, Majaranta et al. [23] proposed to
change the color of a button when it was gazed at to provide the
visual feedback that supports effective text input. Terajima et al.
[5] succeeded in providing visual feedback for the touching of a
virtual keyboard by changing the size of key buttons. We also
employed changing the color and size of a virtual button when it
was pointed at, as shown in Figure 9.

Pointing is detected by checking whether the position of the
fingertip (xt,yt) is within the area of a virtual object for a certain
period. Too long a period annoys users attempting to push a
button, while too short a period causes a false-positive clickable

state for the button, which leads to the Midas touch problem. We
empirically set the period to four frames, or 266msec in 15fps, in
our current implementation.

Figure 9: Visual feedback for pointing.

6 EXPERIMENTS

6.1 Implementation

To verify the effectiveness of proposed click interface, we have

implemented a prototype system, as depicted in Figure 1. An

HMD (Wrap920AR, Vuzix Cooporation) was connected to a

laptop PC (OS : Windows 8, CPU: Core i5, CPU: 2.5GHz, MM:

4GB). The HMD originally possessed two VGA (640x480) USB

cameras. We used one of the cameras for the experiment. The

resolution of the displays was SVGA (800x600).

Two click gesture recognition algorithms are implemented. The

first algorithm recognizes a click gesture by detecting a sudden

drop-off in speed before stopping at a pointed-at virtual object.

The second algorithm uses the state transition diagram based on

the click model shown in Figure 7. When using the state-diagram-

based method, choosing appropriate thresholds is especially

crucial to achieving a high success rate. We have implemented a

calibration tool for adapting the thresholds to individual users.

Figure 10 shows a screenshot of the tool. The user is asked to

click a button a few times, and the system computes the

distribution of ‖ ‖ and ̃ and automatically finds the best

thresholds for the user.

Figure 10: Calibration tool for adapting thresholds to individual

users.

6.2 Evaluation

We have tested the effectiveness of the proposed visual feedback
and the click gesture detection technique via subject studies. To
evaluate the intuitiveness of the proposed click interface, children
and seniors were also invited as subjects.

Two sets of virtual buttons are used in the experiment. Because
the motion of the finger may vary according to the position
relative to the virtual object, the first set of buttons, which is the
same as the one used in the study, is designed to test the relative
position factor among a virtual object, the finger and the camera.

As shown in Figure 11(a), we use five virtual buttons in a cross-
shaped layout for inputting the letters A~E．The size of each
button is 80×80 pixels on the screen. The button for the letter C is
placed in the center of the screen. The distance from the top and
bottom buttons to the center button is 140 pixels, and the distance
from the left and right buttons to the center button is 160 pixels.
The second set of virtual buttons is designed to investigate
whether the proposed detection algorithm is effective even when
the virtual buttons are very close to one another. When the buttons
are placed very close to one another, a part of the fingertip may
overlap with the adjacent buttons and thus may affect the
performance of click gesture detection. We expect that the visual
feedback involving color and size will not only help user to point
at the button more precisely but can also improve the performance
of gesture detection. As shown in Figure 11(b), as a potential
application, we designed a virtual calculator consisting of 18
squared buttons of 60*60 pixels and two rectangular buttons, “0”
and “=,” of 60*125 pixels. The distances in both the horizontal
and vertical directions between the centers of the two adjacent
buttons are 125 pixels. The color of a button changes to orange
when a pointing is detected. The color changes to red, and the size
changes to 1.5 times the original size if a click is detected.

(a) Character input buttons. (b) Virtual Calculator.

Figure 11: Arrangement of virtual buttons for subject study.

6.2.1 Click gesture recognition

We tested the click gesture recognition algorithms based on

sudden speed drop-off detection (Test A) and the state transition

model (Test B) and compared the results of the two algorithms.

Twenty subjects, including nine males and eleven females in their

teens, 20s, and 30s, participated in both tests. To eliminate the

learning effect, they were divided into two groups of the same size.

The subjects in the first group participated in Test A first and then

Test B, while with was reversed in the second group.

For each test, a subject was asked to perform five trials for the

character inputting task and ten trials for the calculation task. For

each trail of the character inputting task, the subject was asked to

input ten characters. For each trial of the calculation task, the

subject was asked to input an equation, such as “123+423=”, to

add, subtract, multiply, or divide two 3-digit numbers. Before

starting the trial, each subject was allowed to practice for 1~2

minutes. The reason we allowed the users to practice is that it was

the first time most subjects had worn an HMD. As a future project,

we plan to use a different task that can help user to get used to the

HMD without any learning effect regarding the proposed interface.

6.2.1.1 Test A: by detecting sudden speed drop-off

Performance data in terms of precision (ratio of true clicks over
all detected clicks), recall (ratio of detected clicks over all the true
clicks), and F-measure for the 20 subjects are presented in Figures
12 and 13. The performance statistics are given in Table 1. As we
can see, the averages of the three measures are all above 93%.
There are no significant differences between the two tasks. The
false detections were mainly caused by the failure of skin area

detection, which results in incorrect fingertip position. In the
experiment, we observed that slow clicking gestures tend to be
missed.

Figure 12: Performance of click gesture detection via sudden speed

drop-off of fingertips for the character input task.

Figure 13: Performance of click gesture detection via sudden speed

drop-off of fingertips for the calculation task.

Table 1: Statistics on the performance of click gesture detection via

sudden speed drop-off of fingertips.

 Character Calculator

 Precision Recall F-measure Precision Recall F-measure

AVE 0.93 0.94 0.93 0.93 0.93 0.93

MAX 0.98 1.00 0.98 0.96 1.00 0.98

MIN 0.88 0.88 0.89 0.89 0.86 0.89

6.2.1.2 Test B: by using the state transition model

The results and statistics are shown in Figures 14 and 15 and
Table 2. Compared to the results of detecting sudden speed-drop
off, all three measures went down. For the character input task,
one subject’s precision was below 80%. We conducted a T-test to
compare the results of the two detection algorithms and found that
there were significant differences at P=0.01 for precision, recall,
and F-measure.

That is, the method of detecting the sudden speed drop-off
outperforms the method using the state transition diagram. The
main reason for this is that the latter uses multiple thresholds and
it is difficult to find the best values for all the thresholds. However,
the state transition diagram is a more general model and can be
easily extended to other gestures. We are now improving the
implementation of state transition detection by using statistical
learning.

Figure 14: Performance of click gesture detection with the state

transition model for the character input task.

Figure 15: Performance of click gesture detection with the state

transition model for the calculation test.

Table 2: Statistics on the performance of click gesture detection

with the state transition model

 Character Calculator

 Precision Recall F-measure Precision Recall F-measure

AVE 0.88 0.93 0.90 0.89 0.92 0.90

MAX 0.94 0.96 0.95 0.93 0.98 0.94

MIN 0.78 0.88 0.83 0.84 0.88 0.87

6.3 Evaluation of the Intuitiveness of the Proposed
Interface

To evaluate the intuitiveness of the proposed click interface, we
invited seven senior subjects between 60 and 70 years old and six
teenagers. None of them were familiar with the computer
environment. They were asked to perform three trials for the
character input task and five trials for the calculation task.

Figure 16 shows snapshots of the experiment. The performance
and the statistics for all subjects are shown in Figure 17, Figure 18,
Table 3, and Table 4. Only the sudden-speed-drop-off-based
algorithm was tested. The performance of the seniors was lower
than that of youth group. As shown by the T-test, there was a
significant difference between the senior group and the youth
group, and between the teenaged groups and youth group, with
p=0.01, but there was no significant difference between the senior
group and the teenager group.

Through interviews, we confirmed that it was very easy for
senior subjects to learn the interface, even without any computer
experience. The visual feedback also contributed largely to the
usability of the interface. Some senior subjects reported that they
felt like they were pushing a button in the real world and that the
highlighting of a button with a different color made them feel the
moment of pushing a button.

(a) A subject in his 70s. (b) A teenaged subject

Figure 16: Experimental environment.

Figure 17: Click gesture detection performance for the senior and

teenaged groups for the character input task (via detecting sudden

speed drop-off).

Figure 18: Click gesture detection performance for the senior and

teenaged groups for the character input task (via detecting sudden

speed drop-off).

Table 3: Statistics on click gesture detection performance for senior

subjects.

 Character Calculator

 Precision Recall F-measure Precision Recall F-measure

AVE 0.86 0.93 0.89 0.83 0.88 0.85

MAX 0.93 0.97 0.93 0.88 0.95 0.90

MIN 0.80 0.87 0.86 0.80 0.80 0.80

Table 4: Statistics on click gesture detection performance for

teenaged subjects.

 Character Calculator

 Precision Recall F-measure Precision Recall F-measure

AVE 0.86 0.91 0.88 0.82 0.91 0.86

MAX 0.97 0.97 0.91 0.88 0.95 0.90

MIN 0.77 0.87 0.83 0.78 0.88 0.84

DISCUSSION

Several subjects reported that the virtual buttons looked like real
buttons. Clicking the buttons was fun and enjoyable. Several
teenaged subjects became enthusiastic during the experiment
because it felt like playing a game. Their comments support the
idea that the proposed interface is intuitive for the subjects. On the
other hand, several senior subjects claimed that clicking in the air
made them tired. Therefore, the current click interface may not be
suitable for use over an extended period of time.

Wearing an HMD was a new experience for all the subjects
except for a few student colleagues. Nevertheless, most of those
subjects did not have any particular difficulties in clicking the
buttons displayed in front of them. The buttons were on the HMD
coordinates, which makes it difficult to place a real finger on the
virtual buttons. The subjects avoided this situation by adjusting
their heads during the experiment. The problem can be solved by
fixing the buttons to the world coordinates of the environment,
which can be realized by using natural feature tracking and
creating a 3D environment map.

7 CONCLUDING REMARKS

We have presented a novel click interface for AR systems with a
single camera. With the new interface, a user can click an object
in an AR environment in the same way he/she interacts with
objects in the real world with his/her finger. A primary study was
first conducted to build a model for a natural click gesture for AR
systems. The effectiveness of the proposed gesture recognition
algorithm, as well as the intuitiveness of the interface, was
evaluated through subject studies.
 The click is the most essential operation of interactive systems,
so our system has a large variety of applications. For example, we
can allow a user to type on a virtual keyboard or play a game with
his/her, finger as shown in Figures 1(b) and (c), respectively. In
Figure 1(c), our technique allows the user to click the positions on
the papers, which are real objects captured by camera. Because we
use a single camera, our technique can be used for building
various user-friendly AR systems on compact devices. For
example, a doctor can retrieve information about a patient without
touching the screen of an iPad during an operation. Another
example is that one can select the menu on a cell phone without
touching the screen when one’s hand is not clean.

As a future project, we would like to design a more elaborate
experimental setup to test the effectiveness of our technique for
different interface variables. One promising approach is to employ
some standard benchmark systems, such as an AR variation of the
FittsStudy software (http://depts.washington.edu/
aimgroup/proj/fittsstudy).

The currently implemented skin area defection algorithm may
fail to detect the hand area correctly if the background consists of
objects of skin-like color. Because the accuracy of the extracted
fingertip position is highly dependent on the accuracy of skin
region extraction, we need to employ more robust techniques.
Recent hand posture estimation methods may contribute to the
solution of this problem. Making proper assumptions about the
environment, such as use in front of a wall, could be a more
practical solution. Currently, we detect the click gesture by either
detecting the sudden slowdown or the state transition of the
motion. By combing the detection of pointing gestures, we can
confirm high performance for both algorithms in the evaluation
tests and avoiding the Midas touch problem. However, more
experiments are required before we can make broad claims about
the effectiveness of the interface. For example, when the users
become more familiar with the interface, they may move their
fingers more quickly and need less time to confirm pointing．In
that case, it may become difficult to distinguish the click gesture

from other quick movements. We are now improving the
robustness of the gesture detection by constructing a probability
model for the state transition of the click model. Currently, our
technique only applies to the click gesture performed with a single
finger. It will be another interesting future direction to extend the
technique to recognizing other kinds of gestures.

Wearing an HMD degrades the intuitiveness of the system. The
HMD did not fit well on a small child’s head in the experiment.
An optical-see-through HMD may provide another solution to
enhance the intuitiveness of the system, but it may cause difficulty
in registering the positions of a real finger and virtual buttons. We
plan to explore the possibility of installing a gaze tracker on an
optical-see-through HMD to register the position of a real finger
and virtual buttons.

ACKNOWLEDGMENT

We are deeply grateful to Prof. Kwan-liu Ma, Dr. Lichan Hong
and anonymous reviewers for the numerous valuable comments
and constructive suggestions. This work was supported by JSPS
KAKENHI Grant Number 25730120 and 25540045.

REFERENCES

[1] GoogleGlass, Google, http://www.google.com/glass/start/.

[2] L. Taehee, H. Tobias. Handy AR: Markerless Inspection of

Augmented Reality Objects Using Fingertip Tracking. IEEE

Wearable Computers, 2007 11th IEEE International Symposium on,

pages 83-90. 2007.

[3] S. Hashimoto, A. Ishida, M. Inami and T. Igarashi. TouchMe: Direct

Manipulation for Robot Based on Augmented Reality. The 21st

International Conference on Artificial Reality and Telexistence,

Proceedings of ICAT2011. 2011.

[4] T. Murase, A. Moteki, N. Ozawa, N. Hara, T. Nakai, K. Fujimoto.

Gesture Keyboard Requiring Only One Camera. Proceedings of the

24th annual ACM symposium adjunct on User interface software

and technology, pages 9-10. 2011.

[5] K. Terajima, T. Komuro and M. Ishikawa. Fast finger tracking

system for in-air typing interface. In Proceedings of the 27th

international conference extended abstracts on Human factors in

computing systems, pages 3739-3744. 2009.

[6] C. Harrison, H. Benko and A. D. Wilson. OmniTouch: Wearable

Multitouch Interaction Everywhere. Proceedings of the 24th annual

ACM symposium on User interface software and technology, pages

441-450. 2011.

[7] C. Colombo, A. D. Bimbo and A. Valli. Visual capture and

understanding of hand pointing actions in a 3-D environment, Man,

and Cybernetics, Part B: Cybernetics. IEEE Transactions on,

volume 33, number 4, pages 677-686. 2003.

[8] Kinect, Microsoft.

[9] iPad, Apple, http://store.apple.com/us.

[10] H. Kim, G. Albuquerque, S. Havemann and W. D. Fellner. Tangible

3D: Immersive 3D Modeling through Hand Gesture Interaction.

Proceedings of the 11th Eurographics conference on Virtual

Environments, pages 191-199. 2005.

[11] A. Wilson, Robust. Vision-Based Detection of Pinching for One and

Two-Handed Input. UIST. 2006.

[12] M. Lee, R. Green, and M. Billinghurst. 3D Natural Hand Interaction

for AR Applications. Image and Vision Computing New Zealand

23rd International Conference, pages.1-6. 2008.

[13] R. Y. Wang, and J. Popovic. Real-Time Hand-Tracking with a Color

Glove. Journal of ACM Transaction on Graphics, volume 28,

number 3. 2009.

[14] A. Akl. A Novel Accelerometer-Based Gesture Recognition System.

Signal Processing, IEEE Transactions on, volume 59, number 12,

pages 6197-6205. 2011.

[15] A. Chaudhary, J. L. Raheja, K. Das, & S. Raheja. Intelligent

Approaches to interact with Machines using Hand Gesture

Recognition in Natural way: A Survey. International Journal of

Computer Science & Engineering Survey, volume 2, number 1,

pages 122-133. 2011.

[16] Leap Motion, Inc, https://www.leapmotion.com/.

[17] The Only Fully Augmented Reality Glasses,

http://www.spaceglasses.com/.

[18] M. Kölsch, M. Turk. Fast 2D Hand Tracking with Flocks of Features

and Multi-Cue Integration. IEEE Workshop on Real-Time Vision for

Human-Computer Interaction, 2004.

[19] M. Kölsch, M. Turk. Analysis of Rotational Robustness of Hand

Detection with a Viola-Jones Detector. International Conference on

Pattern Recognition, volume 3, papes 107-110. 2004.

[20] T.Lee, T.Höllerer. Initializing Markerless Tracking Using a Simple

Hand Gesture. International Symposium on Mixed and Augmented

Reality (ISMAR), 2007.

[21] M. J. Jones and J. M. Rehg. Statistical color models with application

to skin detection, CVPR, pp. 1274-1280, 1999.

[22] R.J.K. Jacob. The Use of Eye Movements in Human Computer

Interaction Techniques: What You Look at is What You Get, ACM

Transactions of Information Systems, Vol.9, No.2, pp.152-169, 1991.

[23] P. Majaranta, A. Aula, K.J. Raiha, Effects of Feedback on Eye

Typing with a Short Dwell Time. ETRA, pp.139-146, 2004.

