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Abstract. A textile fabric consists of countless parallel vertical yarns (warps) and horizontal yarns (wefts). While
common looms can weave repetitive patterns, Jacquard looms can weave the patterns without repetition restric-
tions. A pattern in which the warps and wefts cross on a grid is defined in a binary matrix. The binary matrix can
define which warp and weft is on top at each grid point of the Jacquard fabric. The process can be regarded as
encoding from pattern to textile. In this work, we propose a decoding method that generates a binary pattern from
a textile fabric that has been already woven. We could not use a deep neural network to learn the process based
solely on the training set of patterns and observed fabric images. The crossing points in the observed image were
not completely located on the grid points, so it was difficult to take a direct correspondence between the fabric
images and the pattern represented by the matrix in the framework of deep learning. Therefore, we propose a
method that can apply the framework of deep learning via the intermediate representation of patterns and images.
We show how to convert a pattern into an intermediate representation and how to reconvert the output into a
pattern and confirm its effectiveness. In this experiment, we confirmed that 93% of correct pattern was obtained
by decoding the pattern from the actual fabric images and weaving them again.
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1. Introduction

With the rapid development of modern pro-
duction techniques, the textile industry has un-
dergone rapid changes. Intelligent weave machines
have been introduced to make textiles convenient
to produce and diversified in style and pattern.
In addition, we have a clear need for personalized
customization and on the whole, are not satisfied
with traditional, uniform styles. Many of the an-
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cient textiles exist as real objects only, and the
patterns are still valuable and not outdated. If we
want to reproduce such ancient fabrics, we need
to analyze the patterns. Technicians can analyze
the pattern by observing the fabric using a micro-
scope and recording the crossing state of each yarn
by disassembling them, but this is time consuming
and tedious. At the same time, the original tex-
tile will be destroyed. Therefore, it is not a good
way to solve this problem and we need to find a
novel technique for automatically extracting the
pattern. This would be useful for both reproduc-
tion and generating new patterns.

In this work, we focused on Jacquard fabric in
which the crossing of warp and weft was specified
by a binary matrix pattern. In contrast to ordi-
nary looms, which only weave repetitive patterns,
Jacquard looms can weave free patterns without
repetition restrictions. With Jacquard fabric, the
warp and weft can be defined for each crossing
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point; the resulting fabric is not composed of uni-
form pattern regions. If the fabric is made with
small repetitive patterns, the analysis can be done
manually without much effort, but for Jacquard
fabrics, the analysis of large patterns that make
up the entire fabric is required, and manual anal-
ysis requires much effort. The segmentation based
on pattern uniformity does not work for analyzing
Jacquard textile patterns.

Jacquard textiles are often used in valuable fab-
rics such as traditional costumes and neckties, and
there is high industrial value for the encoding and
decoding of the patterns. Therefore, in this work,
we focused on Jacquard fabric, in which the cross-
ing of the warp and weft was specified by a binary
matrix pattern.

The warp and weft yarns were dyed different col-
ors and the pattern defined how the yarns crossed.
The binary matrix pattern was defined as a bi-
nary image. For example, when the black yarn
was above the white yarn, the crossing point was
displayed in either black or white. We input the
binary pattern into the weaving machine to pro-
duce the fabric. The Jacquard loom was able to
accept the over-under relationship for the individ-
ual crossing points. Modern Jacquard looms can
weave a coded pattern by loading a file of the pat-
tern [1].

The appearances of images are different from
each other, even at the same crossing point where
a weft overlaps a warp. Fig. 1 shows zoomed-in im-
ages of the crossing point area in an observational
image. Conventional template matching was not
able to estimate the exact positions of the crossing
points.

Fig. 1. The variety of crossing points makes the problem

difficult. Conventional template matching cannot deal with

the crossing points.

Where there are many pairs of fabric images and
their corresponding binary patterns, deep neural
networks (DNNs) can decode unknown binary pat-
terns from a corresponding fabric image. However,
DNNs cannot directly output a binary pattern
with thousands of crossing points from a fabric im-
age with millions of pixels. To solve the problem,
we introduced an intermediate representation that
bridged the pair and enabled us to output the in-
termediate representational patterns by a DNN. In
addition, to convert a fabric image into the inter-
mediate representation, and the intermediate rep-
resentation into a binary pattern, we built a prac-
tical method for the conversion. We introduced in-
termediate representation images because we ex-
pected the images to directly represent the likeli-
hoods which are the crossing points. In addition,
due to insufficient sample size, complex networks
that require a large amount of training data are
not likely to be trained well. A more complex net-
work, like an end-to-end network which directly
answers the positions of crossing points, trained by
numerous samples could provide accurate results.

We believe that the objective of this study, tex-
tile pattern decoding, has not been done to the
best of the authors’ knowledge in previous work.
Therefore, we have not found any previous method
that allows direct comparison of accuracy. Instead,
by changing the parameters and kinds of filters in
various ways, we confirmed the best possible set-
tings for the current situation.

The contributions of this paper are as follows:

1. Introduction of an intermediate representa-
tion for textile decoding tasks;

2. Interface design for manual tagging of cross
points on an observed textile image (Section
3.1.1);

3. Proposal of a pre-process for converting a
fabric image to an intermediate representa-
tion (Section 3.1.3); and

4. Proposal of a post-process for converting an
output intermediate representation pattern
into a regular binary matrix pattern (Section
3.3).

Fig. 2 shows the overview of our proposed
method. Section 2 introduces the background and
related work, and Section 3 shows a method of con-
verting a fabric image into an intermediate repre-
sentation pattern as well as an intermediate rep-
resentation pattern into a binary pattern. We also
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Fig. 2. The overview of our proposed method including the steps of (1) Pre-processing; (2) Manual labeling; (3) Integration;
(4) Training; (5) Execution; and (6) Post-processing.

describe the details of DNN configurations. In Sec-
tion 4 we present experimental results and in Sec-
tion 5, a summary.

2. Related Work

2.1. Pattern Creation by Computer Support

Depending on the local density of the cross-
ing points as well as the colors of yarn appearing
on the top, a textile pattern brings different lev-
els of brightness. Inappropriate patterns result in
misaligned grid points and partial fabric stiffness.
Considering many conditions, and through trial
and error, textile patterns have been manually cre-
ated since ancient times. In recent years, systems
for designing textile patterns with the support of
computers have been proposed and it has become
possible to create more complex patterns [2,3,4].

Toyoura et al. [5] proposed a dithering method
for reproducing smoothly changing tones and fine
details of natural images on woven fabric, focus-
ing on representing gray scale images by using two
colors of warp and weft yarns. The weaving pat-
tern is generated by binarizing the input image us-
ing dither masks. The step dithering method alter-
nately places values of 0 and 255 at given intervals
in each row of the dither mask such that there is at
least one cross point of warp and weft yarns in the
spacing in the resulting fabric. Within these inter-
vals, the threshold increases from 0 to 255 or from
255 to 0. This forms a stepping structure up and

down. The resulting binary image reproduces the
brightness of the input image while limiting the
number of crossing points in the weave pattern.

By modeling and rendering 3D CG (computer
graphics) from a textile pattern, the woven result
can also be predicted. By adding a physical colli-
sion detection, it is possible to reproduce the ap-
pearance of fabrics by CG. Users will be able to
modify the pattern without actually weaving it.

There have been many studies on computer
graphics to generate photo-realistic fabric images
from defined patterns [6,7,8,9]. The images ob-
tained by observing yarns, fabrics, and 3D yarn
data obtained by CT are used to generate realistic
images. 3D fabric models are constructed from the
data. These are the opposite of directional studies,
as our proposed method restores patterns from ac-
tual fabrics. In this work, we aimed to output a
pattern of weaving, which would be a complemen-
tary work.

2.2. Pattern Analysis for Fabric Images

Due to industrial demand, the pattern anal-
ysis by DNNs has been introduced for content-
based image retrieval [10], noisy image recogni-
tion [11], 3D medical image super-resolution [12],
video surveillance [13], foreground detection [14],
multi-object tracking [15], explosive device detec-
tion [16], pupil detection [17], online data stream-
ing [18], airport baggage handling [19], and many
other objectives. Computational photography [20]
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and purpose-specific machine learning [21] have
been also employed to solve industrial problems.

Many studies have been conducted to detect de-
fects from fabric images. Huangpeng et al. [22]
constructed a weighted, low-rank, representational
model of textures and detected defects. Ren et al.
[23] realized the detection from a small sample set
using pre-trained DNNs, and Wei et al. [24] also
employed DNN for the classification of fabric de-
fects using a small number of samples. Jeyaraj
et al. [25] improved the accuracy of defect detec-
tion by introducing the characteristic of texture
in the training of DNN. Jing et al. [26] analyzed
the detailed parameter settings of pre-trained net-
works, image patch sizes, the number of layers, and
so on for detecting defects in repetitive patterns.
Li et al. [27] proposed a method for detecting de-
fects by Fisher criterion-based stacked denoising
autoencoders. Liu et al. focused on information
entropy and frequency domain saliency [28]. The
ability to detect defects is valuable for the indus-
try [29,30,31] and patents for defect detection have
been published [32]. On the other hand, defect
detection is a task of anomaly detection or clas-
sification; however the pattern analysis of interest
in this work is the binarization of the regularly
aligned crossing points of warp and weft yarns.

In order to measure the density of the weft
for the woven fabric, Schneider et al. detected
the intensity minima of brightness and estimated
the positions for each [33]. Compared with the
simple Fourier transform, the change in the den-
sity of the weft can be obtained more accurately.
Luo and Li [34] employed image processing tech-
niques for quantifying fiber distribution uniformity
in blended yarns based on cell counting and dila-
tion area estimation. Meng et al. [35] realized their
goal of estimating the yarn density of multi-color
woven fabrics by deep learning. In this method,
assuming that the whole fabric is woven in a pe-
riodical pattern, the intersection of the warp and
the weft arranged on a regular grid is detected.
Near-infrared spectroscopy revealed the material
of yarns [36]. Machine learning also contributed to
estimate the kinematic behavior of yarns [37]. In
this paper, we aimed to analyze different patterns
in a fabric. The grid formed by the warp and the
weft may be greatly collapsed.

Zheng et al. [38] proposed a method for rec-
ognizing how predefined patterns are arranged
on a piece of fabric. Loke and Cheong used co-

occurrence matrices for the recognition [39]. These
methods can be applied when the fabric is com-
posed of a small number of known patterns, but
this cannot be assumed for woven fabrics in which
the pattern is created manually. Therefore, we
aimed to determine the intersection of each point
on the grid.

3. Textile Pattern Decoding from Observed Image

Here, we describe a method for decoding bi-
nary textile patterns from observed images. The
method consists of three parts; pre-processing for
converting a fabric image to an intermediate rep-
resentation (Section 3.1); using a DNN for gen-
erating a label image (Section 3.2); and post-
processing for converting the intermediate repre-
sentation into a binary matrix textile pattern (Sec-
tion 3.3). The training data is a set of observed im-
ages and a corresponding set of intermediate rep-
resentations of these images with manually labeled
cross point positions. At runtime, the final binary
pattern is output from an observed image only.
Fig. 2 shows an overview of the process.

3.1. Pre-process for converting a fabric image to

an intermediate representation

3.1.1. Manual tagging of crossing points

Analysis of the weaving pattern can be done
manually by observing the fabric using a micro-
scope and recording the cross state of each yarn
by disassembling it. This method is very time con-
suming, laborious, inefficient, and costly. In addi-
tion, it is also undesirable to perform such destruc-
tive inspections on textiles of high historical value.
As is shown in Fig. 3, we estimated fabric patterns
from captured images and interactively modified
fabric patterns to analyze weaving patterns. Ini-
tial estimation results of the crossing point posi-
tions of warp and weft yarns were given by image
analysis. The positions were interactively modified
with a GUI so that the pattern could be obtained
in a short time without destroying the actual fab-
ric. Fig. 3 outlines the detection of the positions of
weft yarns by filtering the image with a Laplacian
of Gaussian (LOG) filter. A LOG filter is used to
extract edges, such as regional boundaries, while
removing small noise. We expected to ignore the
fine threads and to output the boundaries between
warp and weft yarns. Where the boundary pixels



S. Chen et al. / Image-based Textile Decoding 5

...

Local minima correspond 

the center position of yarns

Smoothing

(a) Observed image (b) LOG filtered image (c) Yarn position estimation

Fig. 3. Estimation of warp and weft positions. For the input image shown in (a), the LOG filter image shown in (b) is

calculated (σ=11 for Gaussian filter). In order to find the position of wefts, the sum of the pixel values in the LOG image is
calculated row by row. (c) For a 1D sequence of sums, we smooth the values by finding the average of a certain value and the
five neighboring values before and after the value. The local minima of the sequence indicate the positions where the power
of edges is low, so they are output as the center positions of wefts. To estimate the positions of warps, the local minima of

the sequence of vertical sums.

are few, it can be assumed that it is the center of
the crossing point of warp and weft yarns. Since
the edge pixels could be observed at the edge of the
yarn, the center of the yarn was found by picking
up the local minima with fewer edge pixels [38].

When the pixel values were integrated in the
horizontal direction (X direction), the intensity of
the edge component in each row was obtained. The
position where the edge intensity reached the max-
imum was the end of the row with many edge el-
ements, and the row whose edge intensity reached
the local minimum was the center of the yarn with
relatively few edges. Applying the same process to
the warp yarns, the crossing points of the warp
and weft yarns could be obtained as the initial po-
sitions of crossing points. Although this method
can analyze patterns quickly, it is not automated
enough to perform large-scale analysis. Therefore,
we used this method only to prepare training data.

Once the initial positions of the warps and wefts
were determined from the input image, we com-
puted which of the warps or wefts was higher for
each of the grid points. By giving two representa-
tive colors of warp and weft, we could see which
color was closer at a grid point, and then give the
state of the grid at that point as 0 or 1.

In the developed GUI, a user can add, remove,
and move yarns by clicking and dragging on the
screen. The operational mode was defined as move,
add, or delete by key presses: The operation with
the shift key pressed was for the warp; the oper-
ation with the ctrl key pressed was for the weft,
and the operation without pressing any key was for
the crossing point. When the weft and warp posi-
tions were updated, the initial intersection (based

on the new warp and weft positions) could be ob-

tained by pressing the C key. When the F key was

pressed, the vertical direction of the weft and warp

at the crossing point closest to the clicked mouse

position was reversed.

3.1.2. Noise removal of fine fibers

In the observed image, even fine fibers are ob-

served, as shown in Fig. 4(a). The fine fibers pro-

duce intensity edges which result in high values

in the LOG-filtered image. This problem can be

easily solved by the image processing of erosion

and dilation, resulting in the image shown in Fig.

4(b). Erosion and dilation are used to remove the

regions with little area. In our experiments, we

used three functions in MATLAB; strel, imerode,

and imdilate. To obtain the results, the image was

eroded with a 5.5 pixel radius setting and then ex-

panded with the same setting. The radius setting

was determined by checking to see if the thin fibers

disappeared in the sample image.

Fig. 4(c) shows the image with the manually

labeled crossing points. The red and blue points

are central with the red point indicating that the

warp is on top at the point. The blue point in-

dicates that the weft is on top at the point. Fig.

4(d) shows the image with white pixels for the

point of the warp on the weft; black pixels for the

point of weft on the warp; and gray pixels for other

than the crossing points in the image. For machine

learning, the pre-processed image in Fig. 4(b) and

the intermediate representation image in Fig. 4(d)

are provided as a pair; the DNN receives the pre-
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(a) Observed image. (b) Pre-processed image. (c) Manually tagged crossing (d) Filtered labeled image.

points.

Fig. 4. Converting processes of input image into labeled image. The observed image was captured with a camera with a
macro lens. The image was smoothed in the pre-process and the positions of the crossing points were manually tagged. By

filtering the crossing points, we obtained the final, labeled image.

(a) Impulse peak pattern. (b) Gaussian-filtered peak (c) Box-filtered peak pattern. (d) Binary pattern.

I0, defined by Eq. (1). pattern. IG, defined by IB , defined by Eq. (3).

Eq. (2).

Fig. 5. Impulse peak pattern and three kinds of labeled images.

processed image and outputs an intermediate rep-
resentational image.
3.1.3. Converting intermediate representation

images

Here, we considered how to make an intermedi-
ate representational image. If we were to use the
result of manual labeling in its present form, we
would get an image I0 with impulses at the cross-
ing points, as shown in Fig. 5(a) and Eq. (1). At a
crossing point, it would take a value of 0 or 1 and
at the very next pixel, it would take a gray value
of 0.5.

I0(x, y) =







1 if weft on warp at (x, y),
0 if warp on weft at (x, y),
0.5 otherwise.

(1)

In the input image, there is no significant change
in the immediate vicinity of the crossing position,
so it is expected that DNN would have difficulty
producing such an image. The image IG with the
Gaussian blur shown in Fig. 5(b) can represent
the situation in which the likelihood peaks at the
crossing point and the likelihood gradually de-
crease. It is expected to be easier to handle with

DNN than the impulses. I0 can be reproduced by
finding the minimum and maximum points of each
peak. Furthermore, by trial and error, we found
that the image with the box filter as shown in Fig.
5(c) has better accuracy for the resulting images.
The results of using I0, IG defined by Eq. (2), and
IB defined by Eq. (3) for the training data, respec-
tively, are presented in the Experiment section.

IG = LOG(I0), (2)

IB(x, y) =







1 max(s,t)∈N(x,y) I0(s, t) = 1,
0 max(s,t)∈N(x,y) I0(s, t) = 0,
0.5 otherwise.

(3)

Note that N(x, y) represents the set of neighbor-
hood pixels of (x, y). In Fig. 2 and Fig. 4(b), we
used a window of 9×9 pixels as N(x, y). Different
sizes of windows were also tried and examined in
the experiment.

In Fig. 5(d), the final binary pattern is trans-
formed into an image, but the size of the image is
much smaller than the input image. Additionally,
the positions of the crossing points are different
from those of the input image. To obtain such an
image by DNN is difficult because DNN tries to de-
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termine whether a point is a crossing point based
on the information of a pixel and its neighbors.
In that situation, DNN cannot produce an image
like Fig. 5(d) in which the position is completely
misaligned.
3.2. DNN model for generating label image

We used a DNN to output a label image from
the input image. It was necessary to determine
whether a pixel corresponded to a crossing point
by looking at the surroundings of the pixel without
losing the accuracy of the position. We employed
a DNN with a U-net structure [40] to solve this
task in which a network with this structure can
take into account the surroundings by a network
of autoencoders and maintain the resolution by
jumping paths.

The model structure is shown in Fig. 6. The
input to the DNN is a pre-processed image, which
is an image with fine noise removed, and the out-
put from the DNN is an intermediate representa-
tion of the image, which shows the likelihood of
the existence of the crossing points on the image.
The model has a total of six down-roll multi-layer
and six upper convolution layers; the final output
size is the same as the input size. When the pre-
processed observation images were input, the net-
work was trained so that the label images were
output. The input image size of 320×512 was cho-
sen because it is difficult to train a network with
too many neurons due to the limited number of
samples, and because it is easy to work with when
tagging manually. It does not necessarily have to
be this size; other sizes may be used with confi-
dence.

In the learning phase, we gave a pair of observed
images and a label image that were manually gen-
erated. For the loss function, the L1 norm of pixel
values was employed. The number of neurons in
each layer is also shown in the figure. PyTorch was
used for implementation. A more detailed imple-
mentation environment is described at the begin-
ning of the experimental section.

3.3. Post-process for converting intermediate

representation into binary matrix textile

pattern

DNN outputs an intermediate representation
image; however, a non-trivial post-processing is re-
quired to obtain the final binary pattern. This oc-
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Fig. 7. Post processing for the conversion of output image

from a deep neural network.

curs in several steps: 1) the intermediate represen-

tation image is converted into a tri-valued image

of 0, 0.5, and 1; 2) each peak region is merged into

one; 3) the approximate horizontal and vertical po-

sitions of the warp and weft yarns are found; and

4) a determination is made as to which of warp

and weft are over at each grid point. Finally, we

get a binary pattern with 0s and 1s on the grid

points, as shown in Fig. 7.
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3.3.1. Converting the intermediate representation

image into a tri-valued image

The intermediate representation image output
from the DNN had continuous values in the range
of (0, 1). In order to find the crossing points by
segmenting the image, each pixel must have a dis-
crete value. We replaced the value of each pixel
with the closest of the three values, in which the
crossing point of the warp was 0, the crossing point
of the weft was 1, and 0.5 otherwise. This process
is equivalent to thresholding by two values of 0.25
and 0.75. An image is converted into a tri-valued
image only with white, black, and gray pixels.

3.3.2. Integrating regions of multiple values

In the image obtained by the process described
in 3.3.1, based on the gray background, a region
consisting of white pixels only, a region consisting
of black pixels only, and a region containing both
white and black pixels appeared. Since the crossing
points were never adjacent to each other in real
fabrics, no region ever contained both white and
black pixels.

We aim to avoid the coexistence of white and
black pixels in each region that represents a cross-
ing point. The region containing both white and
black pixels was merged into the region with the
larger number of white or black pixels. The pseudo
code for the process is described in Algorithm 1.

The regions were labeled by segmentation and
the adjacent regions for each region were searched.
The connected components labeling (CCL) gave
the individual, connected regions of a binary im-
age drawn by identical numbers. A region con-
taining both white and black pixels could be de-
tected from the adjacency matrix. Ignoring the
background gray region, we first flagged the adja-
cent regions. We then flagged the adjacent regions
of the first set of adjacent regions and repeated
the process until no more flags appeared. Finally,
the black and white regions included in each in-
dependent region were recognized. The number of
white and black pixels belonging to each region
were counted and the region was merged by the
higher color.

After we merged the regions with only white
pixels and black pixels, we next found the repre-
sentative points of each region. Since the repre-
sentative point should be located in the center of
the crossing point region, the pixel at the grav-

Algorithm 1 Integrating regions with multiple val-
ues with connected component labeling (CCL)

Input: Tri-valued image
1: Pixel value v(p) ∈ {0, 0.5, 1} in tri-valued image
2: 4-neighboring pixel of p is N(p)
3: Function BW (p, q) = True only when (v(p) = 0 ∧

v(q) = 1) ∨ (v(p) = 1 ∧ v(q) = 0)
Output: Tri-values image without 0-1 mixed regions
4: ⊲ CCL segmentation
5: CCL segments regions with unique values
6: Identify regions {r} by IDs {i}
7: ⊲ Merge region IDs
8: flag ← True
9: while flag = True do

10: flag ← False
11: foreach Region ri do

12: foreach Pixel p ∈ ri do

13: if ∃q ∈ N(p), BW (p, q) = True then

14: if p ∈ ri and q ∈ rj and i < j then

15: j ← i

16: flag ← True
17: end if

18: end if

19: end foreach

20: end foreach

21: end while

22: ⊲ Unify pixel values in individual regions
23: foreach Region ri do

24: if 0-valued pixels are more than 1-valued pixels
in ri then

25: All pixels in ri ← 0
26: else

27: All pixels in ri ← 1
28: end if

29: end foreach

ity point of each segmented region was to be the
representative point of that region.

3.3.3. Finding approximate horizontal and

vertical positions

Regional representative points indicating cross-
ing points included duplicated and missing points.
The crossing points were constraints that existed
in a grid along the yarns. The regional represen-
tative points satisfying this constraint were picked
up and converted into binary matrix patterns.

First, by detecting the positions of the warp
and weft yarns, the approximate positions of the
grid points were estimated. The distance transfor-
mation image for the obtained candidate crossing
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points were able to show the likelihood of a warp

or weft passing through its position. The positions

of warp and weft yarns were estimated in the same

way as in the pre-processing, using the distance

transformation image as the target.

The crossing point pixels were replaced by 1 as

the object region and the other pixels were re-

placed by 0 as the background region. The value

of each pixel in the distance transformation image

indicated the distance from that pixel to the near-

est pixel in the object region. The distance was 0

for pixels in the object region; the further away

the pixel was, the larger the value was.

We integrated the distance transformation val-

ues of pixels in a column. Along a column, the

more pixels that were in the object region or close

to it, the smaller the integral became while the

likelihood of being the center of the warp or weft

yarn increased. As described in Section 3.A, the

positions of warp and weft yarns were estimated by

determining the likelihood according to the power

of intensity edges. The integral was smoothed in

the same way to reduce the effect of local noise.

By way of this process, the positions of the warp

and weft yarns were estimated.

3.3.4. Determining value at each grid point

As the positions of the warp and weft yarns were

estimated, the positions of the grid points were

also estimated automatically. By assigning a value

of 0 or 1 to each grid point, we were able to obtain

the final binary pattern in a matrix form. In Fig. 7,

the blue lines indicate the estimated location of the

warps while the red lines indicate the estimated

location of the wefts. The white and black points

are representative points with the values of 1 or 0.

For each grid point, we extracted the best can-

didate point within distance s and let the value of

0 or 1 of the candidate points be the value of the

grid points. If there was more than one candidate

point, we adopted the closest one to the grid point;

if there was no point, we adopted the closer color

of which the warp or weft colors from the color

of the grid point itself. s allowed for being set ar-

bitrarily; a smaller value meant that we adopted

only candidates strictly close to the grid point. In

the experiment, we confirmed the accuracy of pat-

tern reproduction according to the variety of s.

4. Experiment

Textile samples were observed with an SLR
camera Canon EOS M for consumer use; we at-
tached a fixed focus macro lens with LED illumi-
nation Canon EF-S 35mm f/2.8 Macro IS STM.
High-resolution images were divided into small,
partial images. The images were made by observ-
ing samples represented in reference [5]. The sam-
ples were woven with black and white yarns only,
and the patterns were generated from natural im-
ages. We obtained 176 images; each had a resolu-
tion of 512× 320 pixels. We then manually tagged
all the images. The number of images is to be
increased to get more accurate results, but it re-
quires more effort. The training images were aug-
mented by flipping them vertically and horizon-
tally and rotating them 180◦; then, 704 exam-
ples were used for the training. With the horizon-
tal mirror images, the vertical mirror images, the
images flipped 180◦, and the original images, there
were a total of 176 × 4 = 704 images. For each
image, we performed the manual cross point ex-
traction as described in Section 3.1. The observed
images and manually added tags are shared at
https://github.com/toyoura/TextileDecoding.

PyTorch was employed as a deep learning frame-
work and GPU GeForce2080Ti 11GB was used for
training and validation. It took about 2.4 hours
to train. The batch size was set to 4 and the
maximum epoch was set to 400. To complete the
process of one image at runtime it took about
1.21 seconds, which included 0.24 second for pre-
processing, 0.08 second for executing DNN, and
0.89 second for post-processing.

4.1. Comparison of intermediate representations

DNNs were respectively trained by the three
intermediate representational images described
in Section 3.2. We performed an 11-fold cross-
validation procedure to ensure the robustness of
the method. The 176 images were divided into 11
groups of 16 images. After training the network
with 160 images, we verified the accuracy of the
remaining 16 images and repeated this process 11
times. The output images obtained by each train-
ing are shown in Fig. 8. For the results, no post-
processing was done.

First, we can see that impulse peak pattern
training does not provide good results. Many re-
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(a) Pre-processed input image.

(b) Result image by impulse peak pattern training.

(c) Result image by Gaussian-filtered peak image training.

(d) Result image by box-filtered peak image training.

(e) ROC-like curve.

Fig. 8. Comparison of the different kinds of intermediate representations for DNN training. The results shown in (c) are given

with σ = 5 for Gaussian filter, and (d) are given with N(x, y) as a window of 9× 9 pixels.

gions of the white yarns were detected as cross-

ing points, and candidate points also appeared at

the edges formed by the yarn contours. When con-

sidering the segmentation of post-processing, the
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noisy clutters did not result in the correct detec-
tion of candidate points.

Although much better results were provided
than those by impulse peak pattern training,
Gaussian-filtered peak pattern training generated
blurry images. The post-processing of the segmen-
tation was not successful because each of the re-
gions became one continuous region of adjacent,
segmented regions. This trend did not improve,
even after changing the variance of the Gaussian
peak. When the variance was set too small, the re-
sults were similar to those induced by the impulse
peak pattern.

Finally, the results trained by the box-filtered
peak pattern were better than the two previous
results. The region indicating each crossing point
was less likely to be integrated with its adjacent re-
gions. The extraction of the candidate representa-
tive points by post-processing also showed good re-
sults in appearance. The correct rate for all groups
was 83.25% on average, and the minimum was
74.13%, the maximum was 99.17%, and the stan-
dard deviation was 8.40%.

4.2. Performance of cross point detection

The resulting binary patterns obtained in the
form of matrices could not be evaluated directly
because the same number of crossing points in
each row and column could not be aligned in the
observed image. Therefore, the observed crossing
points could not be represented in a matrix man-
ner. Instead of the direct evaluation of the binary
patterns, we verified whether the label images were
correctly obtained. The correct label image could
be given by manual labeling. The accuracy of the
position of the crossing points could also be exam-
ined.

Here, we evaluated the representative points of
the crossing point regions obtained from the re-
sulting label image. Many pixels took a value of
0.5 and a few took 0 or 1 to indicate that the pix-
els were representative crossing points. Similarly,
in the manually labeled images, a small number
of crossing points were placed in a background of
many pixels that took a value of 0.5. In order to
verify the match between them, we set a threshold
s for Euclidean distance. For a crossing point in
the manually tagged image, if the extracted can-
didate crossing points were within the threshold
distance, we considered the crossing point to be

correctly detected; if there were multiple intersec-
tions within s, we considered the crossing point
with the smallest distance to be the corresponding
point as shown in Fig. 9.

: Correct 0 crossing point

: Correct 1 crossing point

: Detected 0 crossing point

: Detected 1 crossing point

Threshold s

Correct

Error
Missed

Correct

Fig. 9. Threshold s for quantitative performance assess-
ment.

For quantitative evaluation, for each represen-
tative crossing point in the estimated binary pat-
tern, the rate of correctly detected crossing points
(Correct), the rate of incorrectly detected crossing
points (Error), and the rate of points with no can-
didate points in distance s (Missed) were calcu-
lated. These rates varied depending on the value
of s and were represented by ROC-like curves.

Fig. 8(e) shows the resulting label images and
ROC-like curves. Note that we omitted the quan-
titative analysis for impulse peak pattern training.
There were not enough extracted crossing points
from impulse peak pattern training because result-
ing output images had few large white and black
regions after post-processing.

After extensive trial and error, we found a DNN
with 12 layers, a 9 × 9 box-filter, and a distance
threshold s = 10 indicated good performance. In
the following, we show the experimental results
for different filters, the window size, the number
of layers, and the distance threshold s. From the
image set used for the 11-fold cross-validation, we
employed the worst group (160 images for training
and 16 images for test) for the comparison exper-
iment.

Number of DNN layers To confirm the optimal
structure of the DNN, we designed comparative
experiments, reducing and increasing the number
of neural network layers. The number of layers
should be even because the same number of lay-
ers is required for encoder and decoder parts. The
deepest layers near the bottleneck were added and
removed for changing the number of layers. The
smallest layer of 14-layer network is 5 × 8 × 48,
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(a) Number of layer. (b) Box filter size. (c) Gaussian filter size. (d) s in Box filter. (e) s in Gaussian filter.

Fig. 10. Comparison experiment for different number of layers, filters, and distance threshold s.

(a) Input image. (b) Estimated binary pat-
tern.

(c) Binary pattern valida-
tion.

(d) Reproduced woven fab-
ric of (b).

Fig. 11. Reproduced woven fabric by final decoded binary patterns.

then we cannot add any more layers to 14-layer

network. Fig. 10(a) shows that the 12-layer neu-

ral network had an accuracy level of 74.13%. Un-

der the same circumstances, the 10-layer neural

network had an accuracy level of 74.88%, while

the accuracy of the 14-layer neural network was

78.92%. For the size of the dataset and the degree

of difficulty of the task, the 14-layer network had

the best performance.

Filter parameters

For the intermediate representation, we con-

trolled other unchanged variables, and compared

their results by changing the size of the filter. Al-

though there were a number of values from which
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to choose, considering the feasibility of the exper-
iment, as shown in Figs. 10(b) and 10(c), we com-
pared the Box methods with filter sizes of 5, 7, 9,
and 11; we compared the Gaussian methods with
filter sizes of 3, 5, 7, and 9. When the filter size was
9, the Box-filter method had the highest accuracy
of 78.92%, 7 and 11 had accuracy levels of 72.21%
and 73.99%, respectively. When the filter size was
5, the Gaussian-filter method had the highest ac-
curacy of about 71.69%; 7 and 9 had accuracy lev-
els of about 60.77% and 41.00%, respectively. For
Gaussian size 3 and Box size 5, we could not ex-
tract the binary pattern, so their accuracy was 0.
By comparison, when the filter size of the Box-
filter method was 9, that yielded the best result,
and that was the scheme adopted for our method.

Distance threshold s

Each resulting label image showed the same
trend, as shown in Figs. 10(d) and 10(e), there
were 47.47% of correct crossing points at s = 5;
74.13% of correct crossing points at s = 10; a
6.81% error crossing points at s = 10; and only
0.67% of missed crossing points when s was in-
creased. This indicated that 74.13% of the cross-
ing points were detected correctly within the dis-
tance s, while 7.48% of the warp and weft cross-
ing points were detected incorrectly. Statistically,
the rate of correct crossing points was greatest at
s = 15, which was 74.44%. Considering the total
rate of correct, error, and missed, the performance
is the best at s = 10.

4.3. Validation of decoded binary patterns

Fig. 11 shows the results that were woven by
the obtained binary pattern, together with the
observed image. Since the input image contained
crossing points near the image boundary that
could not be expressed in the form of a matrix, we
ignored the intersections near the boundary and
evaluated them. In addition, we added binary pat-
tern validation in Fig. 11(c) to show the analysis
results. We evaluated whether the values of 0 and
1, given the grid points in the estimated binary
image matched the values in the ground truth im-
age. Each grid point corresponded to a pixel of the
observed image, so we could check the match be-
tween it and the binary value of the nearest cross-
ing point in the ground truth image. In Fig. 11(c),
a red box shows that 0 was wrongly estimated as

1, and a blue box shows that 1 was wrongly es-
timated as 0 for each grid point. In the patterns,
we were able to obtain results that were close in
appearance. Since some of the patterns were ex-
tracted that are not common as woven patterns,
such as too many or too few crossing, there was
room for the pattern to be improved by converting
it with an uncommon pattern such as a restriction.
Although the error in which 0 was wrongly set to
1 and vice-versa is different from a false positive
or a false negative in a general sense, the accuracy
and F-measure of the statistical metric can be ap-
plied to the data. The accuracy for 176 images was
0.930 and the F-measure was 0.929, on average.

Although the obtained pattern was not perfect,
it can be said that the same pattern was approxi-
mately obtained automatically.

5. Conclusions

In this paper, we proposed a method for decod-
ing the binary patterns that define the weaving
of fabric. By developing intermediate representa-
tions, we were able to accomplish the task by deep
learning. The pre-processing and post-processing
allowed us to bridge the intermediate representa-
tion image and the binary pattern. The experi-
mental results showed that our method allowed
for correctly extracting 93% of the crossing points,
and the reproduced textiles were close to the orig-
inal one in appearance. Although the box filter
may not be optimal, it gives better results than
the isotropic Gaussian filter. We consider this to
be due to the grid arrangement of the yarns.

Only black and white yarn images were dis-
cussed in this paper. If the warp and weft are of
one color each, the same processing is considered
possible by converting the image according to the
proximity of each color. Multiple colors may be
used for weft yarns, and this will be handled by
converting the image by the color distance from
that of warp yarn; however we have not confirmed
whether this will work well. That is a topic for
future studies.

It is necessary to ensure that each of the pieces
of yarn are captured one by one in the observed
image, which limits the scope of the observation.
We need a method to integrate the resulting pat-
terns observed at multiple locations. The result-
ing patterns are partially incomplete, which makes
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the problem more difficult. Various image stitching
techniques are helpful. Although we used LOG-
filtered images for detecting the positions of the
yarns, there is the possibility of improving the ac-
curacy by introducing the structural tensor. In the
case of textiles, the yarns are made of even finer
yarns twisted together, so the fine edges can inter-
fere with calculating the correct tensor. We would
like to address these issues in the future.

We will also leave the further tasks of the op-
timization of network configuration and the se-
lection of the backbone network to future work.
Recent powerful machine learning techniques [41,
42,43,44] will contribute to improve the accuracy
of pattern decoding even when the dataset is not
large enough.
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