Computer vision: models,
learning and inference

Chapter 13

Image preprocessing and feature
extraction

Motivation (from Chapter 14)

Spa rse stereo reconstruction

Compute the depth at a set
of sparse matching points

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

Preprocessing

The goal of pre-processing is

— to try to reduce unwanted variation in image due
to lighting, scale, deformation etc.

— to reduce data to a manageable size
Give the subsequent model a chance

Preprocessing definition: deterministic
transformation of pixels p to create data
vector X

Usually heuristics based on experience

Structure

Per-pixel transformations
Edges, corners, and interest points
Descriptors

Dimensionality reduction

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

Normalization

* Fix first and second moments to standard
values

e Remove contrast and constant additive
luminance variations

Before

"E{'i F] . E
L -

r'f‘ﬂ.. A ' r) |

s 4 e [V 1 1

v g j T |)

After

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 5

Histogram Equalization

Make all of the moments the same by forcing
the histogram of intensities to be the same

S

HBEEHHIQ%

P S

Before/ normalized/ Histogram Equalized

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 6

Histogram Equalization

Before

Cumulative Proportion

0.29

0 90
ComQJter vision: models, mabgm@}ebm@igitymon J.D. Prince 235

Convolution

I I | | 1 | 1 I I
1.—.‘, 2 E Ema Under f(‘ba") -
1] AR " as 5a % 6 SRR 8 i 8 W 00 6 808 A f(x) !
. . : —alt-t
1]] ST B a5 e 5 308 B e F i 36 0 00 0 N R Bk W e 6 00 9¢-x) !
: : : (f+a))
04-. \ - -
DDl i e e e A i e R O | CETTERTERY (R TR SN EEEEPRRPREEE -
oL 1 | i 1 l 1
2 -1.5 1 0.5 0 0.5 1 156 2
&t

Wikipedia ~ convolution

SN L, B N S
Wi INIRL W N
N O (= N0

O W =N = W

NN Dlw O

= N U WO A

Original image 6x6

Convolution

“Convolution”

1|0 |-1 .
x 1|0 |-1
10 (-1
Filter 3x3

Output 4x4

Result of the element-wise
product and sum of the
filter matrix and the orginal
image

Convolution

Conv3D

10

Convolution

Takes pixel image P and applies a filter F

M N

Lij = E Pi—m.j—n fn'z.. e
N

m=—M n—=—

Computes weighted sum of pixel values, where
weights given by filter.

Easiest to see with a concrete example

Blurring (convolve with Gaussian)

Figure B.3 Image blurring. a) Original image. b) Result of convolving with a
Gaussian filter (filter shown in bottom right of image). The image is slightly
blurred. c-e) Convolving with a filter of increasing standard deviation causes

the resulting image to be increasingly blurred.

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 12

Gradient Filters

AR | 4
AR v
1t N
\ .
N g
i ﬂ
q .' {
% :){’ v,
(

l

- - _.-f_\-“__.' '-. S B

Prewitt (vertical) Prewitt (horizontal) Laplacian Laplacian of Gaussian Difference of Gaussians

1 1 1 1 0 -1 0 -1 0
0 0 0 1 0 -1 -1 4 =1
—1 ==L =1 1 0 =i 0 -1 0

* Rule of thumb: big response when image
matches filter

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 13

[OpenCV 3.x page 39] Blurring

import cv2
import numpy as np

Img = cv2.imread("images/input.jpg”)

rows, cols = Img.shape[:2]

kernel _identity = np.array([[0,0,0], [0,1,0], [0,0,0]1D

kernel 3x3 = np.ones((3,3), np.-float32) /7 9.0 # Divide by 9 to
normalize

the kernel

kernel 5x5 = np.ones((5,5), np.-float32) / 25.0 # Divide by 25 to
normalize

the kernel

cv2.imshow("Original®, 1mg)

value -1 1s to maintain source iImage depth
output = cv2.filter2D(img, -1, kernel _identity)
cv2.imshow(" ldentity filter®, output)

output = cv2_.filter2D(img, -1, kernel 3x3)
cv2.imshow("3x3 filter®, output)

output = cv2_.filter2D(img, -1, kernel 5x5)
cv2.imshow("5x5 filter®, output)

cv2._.waitKey(0)

[OpenCV 3.x page 41] Motion blur

import cv2

import numpy as np

Img = cv2.imread("1mages/Zinput.jpg”)
cv2.imshow("Original®, 1mg)

size = 15

generating the kernel

kernel _motion_blur = np.zeros((size, size))

kernel _motion_blur[int((size-1)/2), :] = np.ones(size)
kernel _motion_blur = kernel _motion_blur / size

applying the kernel to the i1nput image

output = cv2.filter2D(img, -1, kernel _motion_blur)
cv2.imshow(*Motion Blur®, output)

cv2.waitKey(0)

[OpenCV 3.x page 43] Sharpening

import cv2

Import numpy as np

img = cv2.imread("i1mages/input.jpg")
cv2.imshow("Original®, img)

generating the kernels

kernel_sharpen_1 = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]1D
kernel_sharpen_2 = np.array([[1,1,1], [1,-7,1], [1,1,1]D)
kernel_sharpen_3 = np.array([[-1,-1,-1,-1,-1],
[-1,2,2,2,-1],

[-1,2,8,2,-1],

[-1.,2,2,2,-1],

[-1,-1,-1,-1,-111) 7/ 8.0

applying different kernels to the input image

output_1 = cv2.filter2D(img, -1, kernel_sharpen_1)
output_2 = cv2.filter2D(img, -1, kernel_sharpen_2)
output_3 = cv2.filter2D(img, -1, kernel_sharpen_3)
cv2.imshow("Sharpening®, output_1)

cv2.imshow("Excessive Sharpening®, output_2)
cv2.imshow("Edge Enhancement®, output_ 3)

cv2._.waitKey(0)

Gabor Filters

m? + n2] - [QW(COS[w]m + sin[w]n)

202

A

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 17

Haar Filters

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 18

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_objdetect/py_face detection/py_face_detection.html#face-detection

Face detection using Haar Cascades

import numpy as np
import cv2

face cascade = cv2.CascadeClassifier('haarcascade frontalface default.xml')
eye cascade = cv2.CascadeClassifier('haarcascade _eye.xml')

img = cv2.imread('sachin.jpg")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in faces:
cv2.rectangle(img, (x,y), (x+w,y+h),(255,0,8),2)
roi_gray = gray[y:y+h, x:x+w]
rol_color = img[y:y+h, x:x+w]
eyes = eye cascade.detectMultiScale(roi_gray)
for (ex,ey,ew,eh) in eyes:
cv2.rectangle(roi_color, (ex,ey), (ex+ew,ey+eh), (8,255,0),2)

cv2.imshow(' img',img)
cv2.waitKey(9)
cv2.destroyAllWindows ()

Local binary patterns

o —

* S

.——.-.. [] ®
/ \ / \ | \
o ® [] ®] e
W x J \ y

- ® ~°* .\ o. ../ .\. ./

* \.--..--'./

(P =8,R = 1.0) (P=12,R=15) (P =16,R =2.0)

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

20

Textons

* An attempt to characterize texture
* Replace each pixel with integer representing the texture ‘type’

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 21

Computing Textons

Take a bank of filters and apply

to lots of images

" O

N

\

/

”~

~

\

/

e

]E[IE =Ill]ll

ENNN7AE
!!E!EI! Elllll

Cluster in filter space

For new pixel, filter surrounding region with same bank,
and assign to nearest cluster

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 22

Structure

Per-pixel transformations
Edges, corners, and interest points
Descriptors

Dimensionality reduction

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

23

Edges

(from Elder and

Goldberg 2000)

24

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

Canny Edge Detector

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

25

Canny Edge Detector

Compute horizontal and vertical gradient images h and v

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 26

Canny Edge Detector

j m
h;; . L
(4,j) | (+1,))
Q (i, j+1)
Qij — arctan[vij/hij]

Quantize to 4 directions

Canny Edge Detector

h G,j) | G+1,J)

(i, j+1)

Gij — arctan [’Uz' j / hz‘j]

Quantize to 4 directions

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 28

Canny Edge Detector

Non-maximal suppression

Canny Edge Detector

Hysteresis Thresholding

Harris Corner Detector

hij .. S
ij | G+l
Q (1, Jt1)
}\11/\2 largn
. . 1+D i+D
Make decision based on ¢ Z Z he, hijvi
. I A — w
image structure tensor = , , " hgvg U2
t=t—1 =g —d} J
Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 31

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_features_meaning/py_features_meaning.html

What are features?

Jigsaw puzzle games

- how you do it?

A,B: Flat, difficult
C,D: Edge, still difficult
E,F: Corner, good feature

* Feature Detection
Looking for the regions in images which |
have maximum variation when moved (by i I B

a small amount) in all regions around it skols R

* Feature Description
Describing the region around the feature
so that it can find it in other images

Moravec Corner detection (1980)

corner
isolated point

flat edge

Moravec Corner detection (1980)

V..

Change of intensity for the shift [u,v]: Sl I

E(u,v) = Ew(x,y)[l(x +u,y+u) —I1(x,v)]*

@, j+1)
S ! !
Window function Shifted intensity Intensity
Window function w(x.)f;) = J_,
Four shift: (u, U) — {(1’0), (1,1)’ (0’1), (_1’1)} 1 i window, 0 outside

v The similarity is measured as a sum of absolute differences

v" The corners are the pixels with a low similarity with its neighborhood

Different regions and their derivatives

Corner

Flat

Linear Edge

yojed abewi jndu| aAneAusp X aAllBALBP A

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_features_harris/py_features_harris.html

Harris Corner Detector

 Moravec Corner detection:

= Noisy response due to a binary window function
— = Use a Gaussian function
= Only a set of shifts at every 45 degree is considered
— = Consider all small shifts by Taylor’s expansion
= Only minimum of E is taken into account

— — New corner measurement

Use a Gaussian function

(x? + y2)>

w(x,y) = exp (— —

Window function W(: x,y) =

Consider all small shifts by Taylor’s

expansion ,
VY

E(u,v) = EW(X»Y)[I(X +u,y +u) —I1(x,)]° I, ai | a1,
x,y

. C

= w(x,y) [Ixu + L,v + 0 (u?, vz)] G, j+1)
X,y

direction of the
fastest change

Ellipse E(u,v) = const
direction of the
slowest change

New corner measurement by A, and A,

Ay~ Ay
E increases in all
directions

R = det(M) — k(trace(M))?
where

e det(M) = MiA;
e trace(M) =\ + A;

e A\;and A, are the eigen values of M
S0 the values of these eigen values decide whether a region is corner, edge or flat.

e When |R| is small, which happens when Ay and A, are small, the
region is flat.

® When R < (, which happens when A; >> A, or vice versa, the
region is edge.

¢ When R is large, which happens when A; and A, are large and
A1 ~ Aj, the region is a corner.

Good Feature to Track

Harris Corner Detector in OpenCV

* OpenCV has the function cv2.cornerHarris() for this purpose.

import cwv2
import numpy as np

filename = "chessboard. jpg’
img = cv2.imread(filename)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

gray = np.float32(gray)
dst = cv2.cornerHarris(gray,2,3,0.084)

#result is dilated for marking the corners, not important
dst = cv2.dilate(dst,None)

Threshold for an optimal value, it may vary depending on the image.
img[dst>0.01*dst.max()]=[0,0,255]

cv2.imshow('dst’,img)
if cv2.waitKey(0) & Oxff == 27:
cv2.destroyAllWindows ()

SIFT Detector

Filter with difference of Gaussian filters at increasing scales
Build image stack (scale space)
Find extrema in this 3D volume

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 43

SIFT Detector

-ﬂ‘q-fi
+

B

+
e

g

-+
i

f
1
t B

;:-ﬁ-
+ +
3
¥ &

:

_,
¥ -—
L

$
+
+
+
b=

-+t 4
~F iy indyirri

Identified Corners Remove those on Remove those

edges where contrast is
low

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 44

Assign Orientation

Orientation
assigned by looking
at intensity
gradients in region
around point

Form a histogram of
these gradients by
binning.

Set orientation to
peak of histogram.

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

45

Structure

Per-pixel transformations
Edges, corners, and interest points
Descriptors

Dimensionality reduction

Sift Descriptor

Goal: produce a vector that describes the region
around the interest point.

All calculations are relative
to the orientation and
scale of the keypoint

Makes descriptor invariant
to rotation and scale

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 47

Sift Descriptor

b)
i
_ISNFEESRN
: ARNENET _]
/ \ ~ J 3
TNRE
Al |
1. Compute image gradients 2. Pool into local histograms

3. Concatenate histograms
4. Normalize histograms

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 48

HoG Descriptor

/;.'./ e Troeee] St S

S8

Figure 13.17 HOG descriptor. a) Original image. b) Gradient orientation,
quantized into 9 bins from 0 — 180”. c¢) Gradient magnitude. d) Cell de-
scriptors are 9D orientation histograms that are computed within 6 x 6 pixel
regions. e) Block descriptors are computed by concatenating 3 x 3 blocks
of cell descriptors. The block descriptors are normalized. The final HOG
descriptor consists of the concatenated block descriptors.

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 49

Bag of words descriptor

Compute visual features in image

Compute descriptor around each

Find closest match in library and assign index
Compute histogram of these indices over the region
Dictionary computed using K-means

Shape context descriptor

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html

SIFT (Scale-Invariant Feature Transform)

Corner? Edge? — Scale-variant

E I

SIFT (Scale-Invariant Feature Transform)

e Scale-space Extrema Detection

SIFT (Scale-Invariant Feature Transform)

' . Same?
: : N lII'- o] \ \
| | - |

Keypoint Description

SIFT (Scale-Invariant Feature Transform)

http://www.vision.cs.chubu.ac.jp/cvtutorial/PDF/02SIFTandMore.pdf

D. Lowe (ICCV99, 1JCV04)
1. Keypoint Detection

A. Scale-space keypoint detection
B. Keypoint localization
2. Feature Description
A. Orientation assignment
B. Keypoint description

Scale detection - Laplacian-of-Gaussian

[Lindeberg 98]

Change o of LoG Operator

2

. x*+y* =207 x*+y°
LoG= f(o)=- = exp| — -
7=/ 2710° p[267]

o: scale, x,y: distance from target pixel

o=9

\/\/

LoG operator

Pixel value in LoG
=
7

Difference-of-Gaussian (DoG)

~ Approximation of LoG

L(x,y,0) =G(x,y,0) *I(x,y) L(x,v,0) : Smoothed image
Pt I(x.vy : Inputi
Gl | g i w(m V) . nput image
2n0” 20° G(x.v.0) - Gaussian function
D(.T,_V,U) = L’(-)‘.a,".vka) T § L(.\.,}",U) D(X:_T:O-) : DOG image
k - Increased ratio

DoG image v.s. LoG image

Smoothd image

Scale-space by DoG

Scale Smoothed image DoG images

DoG with Down sampling

L(ko,)

* Solve the problems:
Filter edge
Computational cost

Ly(o)) =L,(20) = LI(‘“IG)

DoG with Down sampling

hoids ol b o
ﬂuﬁu

!
40, 80,
o b b b o

Scale-space by DoG

/////////

* Find peak
from 3
images

AVAVAVA

Scale Smoothed image DoG images

Scale-space by DoG

~—_ 103 Pixel value in DoG

3

/

16 10b
O3= \
/ \ 47 Local maxima
53/
0-=10 ——
2 \ \41
/1 12/
o,=6
| \]O
i
p

Op— 4

Original image

Local maxima in scale space

30
20 =
Q0= -
o
0 -
10— -
200x200
205 10 70 gl
Scale(o)
g =5
_ 30 +
20— -
%10 = -
o
0 -
B 10}~ -
204 i 30
Scale(o)
()'2=-| O

400x400

SIFT (Scale-Invariant Feature Transform)

http://www.vision.cs.chubu.ac.jp/cvtutorial/PDF/02SIFTandMore.pdf

D. Lowe (ICCV99, 1JCV04)
1. Keypoint Detection

A. Scale-space keypoint detection
B. Keypoint localization
2. Feature Description
A. Orientation assignment
B. Keypoint description

Keypoint localization

Not appropriate for keypoint:
Points on the edge — Similar appearance

Small pixel values in DoG image — Easily affected by noise

Keypoint candidates Decreased by principal curve Decreased by contrast

(1895) (1197) (421)

Principle curve by A, and A,

Ay~ Ay
E increases in all
directions

Sub-pixel localization of keypoints

e Parabola fitting in 3D space

Taylor expansion of x=(x.y.0)

oD 1 , D

x ita Points D(X)=D+— X+—X!ﬁx

- tual Minire X 2 oX”
TR D &'D. #D. D
— -x =140 X = ———
oxX oOxX” ox” oxX

[y

o'D o'D a'D| [4p]
o’ axy dxo 2

x P 7 7
: H D D &D| |aD

X X B 5wl |3
ARy Y va V

x ‘ \‘U‘ 1- -1 -'I "
% FD &D &D| D
1 dxo dyo do°| Ldo]

Sub-pixel minima

Corner with SubPixel Accuracy

cv2.cornerSubPix() which further refines the corners detected with sub-pixel accuracy.

T Relationship with A, A,?

import numpy as np

filename = 'chessboard2.jpg’

img = cv2.imread(filename)

gray = cv2.cvitColor(img,cv2.COLOR_BGR2GRAY)

find Harris corners

gray = np.float32(gray)

dst = cv2.cornerHarris(gray,2,3,8.84)

dst = cv2.dilate(dst,None)

ret, dst = cv2.threshold(dst,8.81*dst.max(),255,8)
dst = np.uint8(dst)

find centroids
ret, labels, stats, centroids = cv2.connectedComponentsWithStats(dst)

define the criteria to stop and refine the corners
criteria = (cv2.TERM_CRITERIA EPS + cv2.TERM_CRITERIA_MAX ITER, 100, ©.0601)
corners = cv2.cornerSubPix(gray,np.float32(centroids),(5,5),(-1,-1),criteria)

Now draw them

res = np.hstack((centroids,corners))
res = np.int@(res)
imgfres[:,1],res[:,8]]=[©,0,255]
img[res[:,3],res[:,2]] = [©,255,8]

cv2.imwrite('subpixelS.png’',img)

Thresholding of low-contrast points

T
D& =D+ & < th~0.03
2 K

SIFT (Scale-Invariant Feature
Transform)

http://www.vision.cs.chubu.ac.jp/cvtutorial/PDF/02SIFTandMore.pdf

D. Lowe (ICCV99, 1JCV04)
1. Keypoint Detection

A. Scale-space keypoint detection
B. Keypoint localization
2. Feature Description
A. Orientation assignment
B. Keypoint description

Orientation Assighnment

Gradient directions at the pixels

m(u,v) = \/(L(u +1,v) = L(u-1v))* + (L(u,v + 1) = L(u,v = 1))*

Ou,v) = tan—l(L(”:"’ +1) - L(u,y - l))

Lu+1v)-Lu-1yv)

Histogram of gradient direction

Gaussian

X = Weight

-

-) Histogram

Direction

- b
| m "r "

() =L+ 1)~ Lu— 1) + (L + DLy -0y L JH M I

B tanl(L(.u,v +1) = L,y - 1)] l‘
Lallll

Ll ly)=Lin—12) o AALELOAIC | |
k 0 Direction (36bin) 35

Orientation Assighnment

e Over 80% of the maximum

Keypoint direction(s)

— peak
0.8 |—

Ml

0 Direction (36bin) 35

Orientation Assignment
* Over 80% of the maximum

wo keypoint directions

peak | peak?
1

8

e

Direction (36bin)

SIFT (Scale-Invariant Feature Transform)

http://www.vision.cs.chubu.ac.jp/cvtutorial/PDF/02SIFTandMore.pdf

D. Lowe (ICCV99, 1JCV04)
1. Keypoint Detection

A. Scale-space keypoint detection
B. Keypoint localization
2. Feature Description
A. Orientation assignment
B. Keypoint description

Keypoint description

Rotate by orientation

Keypoint orientation

Region for description

Keypoint description

8 directions

NGk e e[3k |
%gé}é%*
Tk K K
%AH@F

4 regions

4 regions

Gaussian window

16 blocks around the keypoint - Histogram of 8 directions (45 degs)
— 16 blocks x 8 directions = 128 dim descriptor

(+ Normalization for illumination robustness)

SIFT in OpenCV

import cv2
import numpy as np

img = cv2.imread('home.jpg')
gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

sift = cw2.SIFT()
kp = sift.detect(gray,None)

img=cv2.drawKeypoints(gray, kp)

cv2.imwrite('sift keypoints.jpg',img)

Structure

Per-pixel transformations
Edges, corners, and interest points
Descriptors

Dimensionality reduction

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

79

Dimensionality Reduction

Dimensionality reduction attempt to find a low dimensional (or
hidden) representation h which can approximately explain the

data x so that
x ~ f(h,6)

where f|e, o] is a function that takes the hidden variable and
a set of parameters 0.

Typically, we choose the function family f|e, @] and then learn h
and 0 from training data

Computing h

..
e O
(... ¢
° o o 0dO0 (e (€a¢C(O ¢Co (00 (B
o5 °
'(o:. h
.
®
L1

To compute the hidden value, take dot product with the vector ¢

Least Squares Criterion

6.h, ; = aremin Z (x; — f[h?;jQDT (x; — f|h;, 0])
0.hy 1

Choose the parameters 0 and the hidden variables h so that they
minimize the least squares approximation error (a measure of
how well they can reconstruct the data x).

Simple Example

X; = Qh; + W

Approximate each data example x with a scalar value h.
Data is reconstructed by multiplying h by a parameter ¢ and

adding the mean vector p.

... or even better, lets subtract u from each data example to get
mean-zero data

Simple Example

Pl

Approximate each data example x with a scalar value h.
Data is reconstructed by multiplying h by a factor ¢.

Criterion:

MH

— oh)" (xi — phy)

@, h1..; = argmin |[F| = argmin
¢.hi 1 ¢.hi 1

1= 1

Criterion

I
éﬁf .7 = argmin [F] = argmin Z Q‘)h x; — ¢h;)

b.h1...1 ¢.ha1 |

Problem: the problem is non-unique. If we multiply f by any
constant a and divide each of the hidden variables h; , by the
same constant we get the same cost. (i.e. (fa) (h,/a) = th,)

Solution: We make the solution unique by constraining the
length of f to be 1 using a Lagrange multiplier.

Criterion

Now we have the new cost function:

1
E =) (xi—¢h) (xi—¢h)+ Ao ¢—1)
1=1
1
=) x/x;—2hi¢' x; +h] + Ao ¢ —1).
1=1

To optimize this we take derivatives with respect to ¢ and h;,
equate the resulting expressions to zero and re-arrange.

Solution

A T
hi = ¢ x;

To compute the hidden value, take dot product with the vector ¢

Solution

A T
hi = ¢ x;

To compute the hidden value, take dot product with the vector ¢

I
Z X, X! p = A\
1=1
of T ~ where
XX ¢:A¢ X:[X1,X2...XI]

To compute the vector ¢, compute the first eigenvector of the
scatter matrix XX .

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 88

Computing h

..
e O
(... ¢
° o o 0dO0 (e (€a¢C(O ¢Co (00 (B
o5 °
'(o:. h
.
®
L1

To compute the hidden value, take dot product with the vector ¢

Reconstruction

X, ~ Qh; xEoh W

e @O (100 0D O GO @@ QD@ G @ Io

o
hi &

To reconstruct, multiply the hidden variable h by vector ¢.

Principal Components Analysis

Same idea, but not the hidden variable h is multi-dimensional.
Each components weights one column of matrix F so that data is
approximated as

This leads to cost function:

I
®,h, ; = argmin [F] = argmin Z (x; — ®h;)" (x; — ®h;)
P .h; g ®h 1 |

This has a non-unique optimum so we enforce the constraint
that F should be a (truncated) rotation matrix and F'F=I

PCA Solution
h?; — (I)TX?;

To compute the hidden vector, take dot product with each
column of ®@.

To compute the matrix @, compute the first 1), eigenvectors of
the scatter matrix XX

The basis functions in the columns of @ are called principal
components and the entries of h are called loadings

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 92

Dual PCA

Problem: PCA as described has a major drawback. We need to
compute the eigenvectors of the scatter matrix

XX

But this has size D, x D,. Visual data tends to be very high
dimensional, so this may be extremely large.

Solution: Reparameterize the principal components as
weighted sums of the data

o = XW¥

...ahd solve for the new variables V.

Geometric Interpretation

b = XW

Each column of @ can be
described as a weighted
sum of the original
datapoints.

Weights given in the
corresponding columns of
the new variable W. ®

Motivation

Solution: Reparameterize the principal components as
weighted sums of the data

...and solve for the new variables V.

Why? If the number of datapoints | is less than the number of
observed dimension D, then the ¥ will be smaller than ® and
the resulting optimization becomes easier.

Intuition: we are not interested in principal components that
are not in the subspace spanned by the data anyway.

Cost functions

Principal components analysis

I
P, h/\l.“[= argmin [F| = argmin Z (x; — tI)hi)T
@ahl...f @7h1...f i=1

...subject to ®1D=I.

— ®h;)

Dual principal components analysis

E = Z — XW¥h,)" (x; — X@h,)
1=1

...subject to ®'®=I or Y XTXP=I.

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

96

Solution
h?; — \IJTXTX?; — (I)TX?;

To compute the hidden vector, take dot product with each
column of ®=¥X.

Solution
h?; — \IJTXTX?; — (I)TX?;

To compute the hidden vector, take dot product with each
column of ®=¥X.

To compute the matrix ¥, compute the first D}, eigenvectors of
the inner product matrix X'X.

The inner product matrix has size | x |.

If the number of examples | is less than the dimensionality of
the data D, then this is a smaller eigenproblem.

K-Means algorithm

Approximate data with a set of means

Xi ~ Hp,

Least squares criterion

I
By ks i’»l....f = argmin [Z (x,;_ - “h,.;)T (Xi - “’h.?-_)
who =1

Alternate minimization

h; = argmin [(xi — u;.,,?,)T (X-i — Nhf)]
hi | |

1
[t = argmin [Z |:(X.f. — uh_i)f (X?; - Mha)]]

K i=1
>y Xid[hi — k]
S Olhy — k]

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

99

a) de ® .. b) de @ .. C) L {] ® ..
e *oe o e oo e oo o
® o © ® ® ® ® ® o © ®
® o0 . ® oo o ® oo &
+ o + + . + T .
i +) » 0.:)
& @
v o v 9 S
[..1 P ® ..\ & ¢ ..‘ &
Update hy g Update p1. g
d) [{] ® .. e) [{] ® .. f) de ® ..
._o.. ® .+1' @.o o 4o to.o ® .-|-c‘
® 0o’ . ® 0o’ . LI % "
® ® 4= @
+ o ® .
[] [] []
L N)] L X)] L X J}
[® ®
L 1 L
+» o N
* %% e o "t“ @ - "'t‘ ®
Update hy..1 Update u;..k Update hy_. s
h [
g9) o o °) o o °) " & %
R .+." IR .+." CR +°
L
® -'!.- .. . & ° -'!,- .. . @ ® o .. . ®
[] [@
[] [])
L X)] L N J] L X)
-] [-] *«
= ® 4 ® + ®
* %0 * 0o * %o
Update p1..k Update hy..; Update p1..x

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

100

