Computer vision: models,
learning and inference

Chapter 14
The pinhole camera



Structure

Pinhole camera model
Three geometric problems
Homogeneous coordinates

Solving the problems

— Exterior orientation problem
— Camera calibration

— 3D reconstruction

Applications



Motivation

Sparse stereo reconstruction

Compute the depth at a set
of sparse matching points
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Making Your Own Room With a View | National Geographic

https://www.youtube.com/watch?v=gvzpuOQ9RTU
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Focal length parameters

Can model both
e the effect of the distance to the focal plane
e the density of the receptors

with a single focal length parameter ¢

B

w w

In practice, the receptors may not be square:

u v
oo b tw
w w

So use different focal length parameter for x and y dims



Offset parameters

e Current model assumes that pixel (0,0) is
where the principal ray strikes the image
plane (i.e. the center)

e Model offset to center

w
U
y = Py -0y



Skew parameter

* Finally, add skew parameter

* Accounts for image plane being not exactly
perpendicular to the principal ray

xr = ¢xu+’yv+5m
w
u'U
Yy = &"‘&y

w



Position and orientation of camera

e Position w=(u,v,w)' of point in the world is generally not
expressed in the frame of reference of the camera.

 Transform using 3D transformation
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Complete pinhole camera model

O (W11U + W10 + Wi3W + Tz) + Y(W21U + W2t + wWasw + T)

W31 U + W32V + W33W + T2

.

W31U + W32V + W3zW + T.

Intrinsic parameters
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Complete pinhole camera model

v O (W11U + W12V + WisW + Ty) + V(W21 U + Woo¥ + wasw + T,) 45
/ - xr
W31U + W32V + W33W + T»

z Oy (Wa1U 4 Wao¥ + wasw + T) L5
W31 U + W32V + W33W —+ T

For short:

x = pinhole/w, A, 2, T

Add noise — uncertainty in localizing feature in image

Pr(x|w, A, Q,7) = Normy [pinhole[w, A QT O'QI]



Radial distortion

y' = y(1+ B + for?)
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Barrel Distortion

Pincushion Distortion
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Problem 1: Learning extrinsic
parameters (exterior orientation)
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Use maximum likelihood:
I
Qg T = argmaxz 10% []D’F(I"(@'|\Vij j‘j S}j ’T)]
Q. —
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Problem 2 — Learning intrinsic
parameters (calibration)

a) b)

@i &=
Optical Optical
center center

Use maximum likelihood:

I
A: log |P i iqA.Qq
algfr{lax l%a}; og |[Pr(x;|w;, A, Q,T)]
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Calibration

s s T i

e Use 3D target with known 3D points
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Problem 3 — Inferring 3D points
(triangulation / reconstruction)
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Use maximum likelihood:

7
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7=1



Solving the problems

 None of these problems can be solved in closed form

e (Can apply non-linear optimization to find best solution but
slow and prone to local minima

e Solution — convert to a new representation (homogeneous
coordinates) where we can solve in closed form.

e Caution! We are not solving the true problem —finding
global minimum of wrong* problem. But can use as
starting point for non-linear optimization of true problem

*= WEe'll first minimize algebraic error, instead of geometric
error (see Minimizing Algebraic Error in Geometric Estimation Problems, Hartley 1998)
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Homogeneous coordinates

Convert 2D coordinate to 3D

g
X = | Ay
e A —
To convert back
T Y
xr = = Yy = =
2 Z



Geometric interpretation of
homogeneous coordinates




Pinhole camera in
homogeneous coordinates

Camera model:
DU+ YU -

w
Dy V
. -Ty | \
gy = = 0y
w -
In homogeneous coordinates:
- - = 1 Uu
X GOr v 0p O y
Ayl = Gy 0y U n
1 0O 0 1 0 |

(linear!)



Pinhole camera in
homogeneous coordinates

- - - - = u
X Or v 0s 0 y
Ayl =10 ¢, o4, O n
1 O O 1 0
- - - 411
Writing out these three equations
AU = O U+ YU+ 0w
AY = OyU+ 0yw
A = w.

Eliminate A to retrieve original equations



Adding in extrinsic parameters

] o v 0 O]
Ayl =10 ¢, o, 0
1] 0 0 I 0
Or for short:
Ax = [A 0]

Or even shorter:
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Problem 1: Learning extrinsic
parameters (exterior orientation)
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Use maximum likelihood:
I
Qg T = argmaxz 10% []D’F(I"(@'|\Vij j‘j S}j ’T)]
Q. —
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Exterior orientation

Start with camera equation in homogeneous coordinates
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o Ui

N (Y| = 0 @y 0y| |W21 W22 W3 Ty ‘
w;

1 0O 0 1] w31 w32 w3z T |

Pre-multiply both sides by inverse of camera calibration matrix
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Exterior orientation
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The third equation gives us an expression for A
Ai = W31 U; + W32V; + W3sW; + T

Substitute back into first two lines

/
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(w.‘Blui + W32V; + WagW,; + TZ).CU
(W31u; + w32v; + wWsw; + T2)Y

Exterior orientation

|-

Linear equation — two equations per point —

form system of equations
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Exterior orientation
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Minimum direction problem of the form Ab = 0,
Find minimum of |Ab|? subjectto |b| = 1.

To solve, compute the SVD A = ULV andthen
set b tothelast columnof V .



Exterior orientation

Now we extract the values of €2 and T from V.

Problem: the scale is arbitrary and the rows and
columns of the rotation matrix may not be orthogonal.

Solution: compute SVD 2 = ULV and then
choose 2 = UV,

Use the ratio between the rotation matrix before and
after to rescale

Use these estimates for start of non-linear optimisation.
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Problem 2 — Learning intrinsic
parameters (calibration)

a) b)
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Use maximum likelihood:

I
A: log |P i iqA.Qq
algfr{lax l%a}; og |[Pr(x;|w;, A, Q,T)]
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Calibration

)

A = argmax {maleog Pr(x;|w;, A, Q,T)]
A

One approach (not very efficient) is to alternately

e Optimize extrinsic parameters for fixed intrinsic

Q.7 = algmax {Z log [Pr(x;|w;, A, Q,T)]

T

e Optimize intrinsic parameters for fixed extrinsic

-~

I
A = argmax [Z log | Pr(x;|w;, A, Q,T)]
A —

( Then use non-linear optimization )




Intrinsic parameters

T
A = argmax {Z log [Pr(x;|w;, A, €, T)]
A i=1

Maximum likelihood approach

I
rgma log [Normy, [pinhole[w;, A, Q, 7], 0”1
algjl\nax [; og |[Normy, [pinhole[w;, A, Q,T]. 0 ]]]

!
— argmin {Z (x; —pinhole[w;, A, (2, TDT (x; —pinhole[w;, A, Q2 T])
A i=1

This is a least squares problem.
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Intrinsic parameters

I
— argma log [Norm,. [pinhole[w;. A. Q. 7], 0°T
algﬁlax [?Z; og |[Normy, [pinhole[w;, A, Q, 7], 0 ]]]

I
— argmin [Z (x; —pinhole[w;, A, 2, TDT (x; —pinhole[w,;. A, 2, T])
A =

The function pinhole|e, e e o] islinear w.r.t. intrinsic
parameters. Can be written in form A ;h

W11 U2V W13 Wi+ T, W21 Ui+w22 Vi HU23 Wi +T, 1 0 0
A | W31 U w32 v w3 Wit T . W31 U;TwW32 Vi twa3 wi+T -~
(2 0 0 0 W21 UiHwWo2 Vi3 WitTy 1
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h = [, 7. 00, Oy, 6] 7

! .

Now solve least squares problem
I

h = aremin A;h —x; I A.h —x;
gain |3 )7 )
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Problem 3 — Inferring 3D points
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Reconstruction

W = argmax

\"\"4 j:1

J
> log[Pr(x;|w, A;, Q,7))

Write jth pinhole camera in homogeneous coordinates:

L Pz Vi Oy
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Ail¥i| = |0 Qyi Oyj| |Worj Wy Wosg
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Pre-multiply with inverse of intrinsic matrix
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Reconstruction
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Last equations gives \j = w31 + w32V + W33, W + T4

Substitute back into first two equations o

) ) ; ) ; / y y y .
7 ==

(w31j’u + W32,V + W33 W + sz)y‘,j Wo1j W2 Wagj Tyl |W
) 1
Re-arranging get two linear equations for [u,v,w] -
[CUSljiE;' — W11y w‘az;ﬂf; — W12y w33;;'3?;- - w13j] zj . [Tm - sziﬁf,-]
w31j’y3’- — Wa1j WSQ;;‘TJJI' — Wa2j w%%;’y; — W23j w N Tyj — szii};

Solve using >1 cameras and then use non-linear optimization
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Depth from structured light

Figure 13.12 Depth maps from structured light. a) A three-dimensional
scene that we wish to capture. b) The capture hardware consists of a pro-
jector and a camera, which both view the scene from different positions. c)
The projector is used to illuminate the scene and the camera records the
pattern of illumination from its viewpoint. The resulting images contain in-
formation that can be used to compute a 3D reconstruction. Adapted from

Scharstein & Szeliski (2003). (©2003 IEEE.
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Depth from structured light

Figure 13.14 Recovered depth map
for scene in figure 13.12 using the
structured light method. Pixels
marked as blue are places where the
depth is uncertain: these include posi-
tions in the image that were occluded
with respect to the projector and so no
light was cast onto them. Scharstein
& Szeliski (2003) also captured the
scene with two cameras under normal
illumination; they subsequently used
the depth map from the structured
light as ground truth data for assess-

ing stereo vision algorithms. Adapted
from Scharstein & Szeliski (2003).
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Shape from silhouette
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Shape from silhouette
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Conclusion

Pinhole camera model is a non-linear function
that takes points in 3D world and finds where
they map to in image

Parameterized by intrinsic and extrinsic
matrices

Difficult to estimate intrinsic/extrinsic/depth
pecause non-linear

Use homogeneous coordinates where we can
get closed form solutions (initial sol’ns only)
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