Computer vision: models,
learning and inference

Chapter 15

Models for transformations



Structure

Transformation models

Learning and inference in transformation models

Three problems

— Exterior orientation
— Calibration

— Reconstruction

Properties of the homography
Robust estimation of transformations
Applications



Transformation models

* Consider viewing a planar scene

* Thereisnow a 1to 1 mapping between points
on the plane and points in the image

 We will investigate models for this1to 1
mapping
— Euclidean
— Similarity
— Affine transform
— Homography



Motivation: augmented reality tracking
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FEuclidean Transformation

 Consider viewing a fronto-parallel plane at a known
distance D.

* In homogeneous coordinates, the imaging equations are:

Uu

L (D x 7 O w11 wie 0 7y D
A Y — 0 (Dy O;U Wo1 W9 0 Ty 0
1 0 0 1 0 0 1 D |

3D rotation matrix Plane at known Point is on plane

becomes 2D (in plane) distance D (w=0)



Euclidean transformation

&

L7




Euclidean transformation

 Simplifying
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Euclidean transformation
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Euclidean transformation

£z (“) T Y (5:1? W11 Wi2 Ty Uu
A Yy = 0 (?)q (5.3} W21 W22 Ty v
1 0 0O D 0 0 1 1

 Pre-multiplying by inverse of (modified) intrinsic matrix
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Euclidean transformation

Homogeneous:
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Similarity Transformation




Similarity Transformation

Consider viewing fronto-parallel plane at unknown
distance D

By same logic as before we have

- - T 1 |u

x Dy Y 0 T Wi1 Wi2 0 T D
Ay = 0 @y 0y jwor w22 0 T 0
1 0 0 1 0 0 1 D |

Premultiplying by inverse of intrinsic matrix
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Similarity Transformation

implifying: . 1 [
S p y g 2’ W11 W12 0 Tr IU
/ U

AY | = |wa w2 07|
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W11 W12 T Uu
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Multiply each equationby p=1/D:
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Similarity Transformation

Simplifying:
k4 _Pw 11 pWiz2 PT o] [ul
pPA Y| = |pwar pwaa  PTy| |V
1 0 0 L |1
Incorporate the constants by defining:
Ty — /)Ty T;I? — pT:r. )\ < /0)\
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MY = |pw21 pPW22 Ty| |V
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Similarity Transformation

Homogeneous:
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Affine Transformation

Homogeneous:
Ed T

My | = |21 P22
|1 0 0

Cartesian:
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Affine Transform

a)
Affine transform describes mapping well When variation in depth is comparable to
when the depth variation within the distance to object then the affine
planar object is small and the camera is transformation is not a good model. Here

far away we need the homography
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Homography




Projective transformation /
collinearity / homography

Start with basic projection equation:

Combining these two matrices we get:
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Homography

Homogeneous:
T P11 Q12 13| |u
Ayl = |[P21 P22 @os| |V
1 P31 Q32 ¢Pasz| |1
Cartesian:
G11U + @120 + P13
P31U + Q320 + 33
@21’11, + @QQU + (’Dgg
y = 7
®31U + P32V + P33

—1 For short:

x = hom|w, P]



Modeling for noise

* In the real world, the measured image positions are
uncertain.

e We model this with a normal distribution

¢ e.g.

Pr(xjlw) = Normy [hom[w, ®],0°1]



Structure

Transformation models
Learning and inference in transformation models

Three problems

— Exterior orientation
— Calibration

— Reconstruction

Properties of the homography
Robust estimation of transformations
Applications
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Learning and inference problems
Pr(x|lw) = Normy [hom[w, ®],o°1]

* Learning — take points on plane and their
projections into the image and learn
transformation parameters

* Inference — take the projection of a point in
the image and establish point on plane



Learning and inference problems

a) 19.4 cm

W*

David ). C. MacKay 3 8

Information Theory, inference,
and Learning Algorithms

25.2cm
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Learning transformation models

Maximum likelihood approach
1
6 = arg Normy, [t 0, 0], 021
alglenax _?1_[1 oIy, |trans[w;, 6], 0 }]
1
= argmax Zlog [Normy, [trans[wi,G]ﬂJQIH]
o =1
Becomes a least squares problem
I ]
6 = argmin Z (x; — trans|w,, 9])T (x; — trans|w,;, 0)])
6 i=1
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Learning Euclidean parameters

"I
Q,# = argmin Z(X@i — euc|w;, Q. 7))’ (x; — eucw;, Q. T])
2.7 | 1=1
C I
= argmin Z(Xz—_ —Qw, — 1) (x; —Qw,; — 1) |,
27 | 1=1

Solve for transformation:

I
. 7 Q )
T = Zz:l XI . = MKy — Qp’w
Remaining problem:
I
@ =argmin | > (06— ) = Qwi = )" (%= p1,) = Uwi = p,))
g=1
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Learning Euclidean parameters

1
= argmin |3~ ((x Qw, — p2,))" (0 = p1,) — RAw,

=1

Has the general form:

() = argmin |B — QA| . subject to Q' =1, |Q| =1
Q

This is an orthogonal Procrustes problem. To solve:

e ComputeSVD ULV? = BAT
e And then set Q — VU?



Learning similarity parameters

i
Q, T.p = argmin Z(Xi — sim[w,;, Q. T, f)DT(X?7 — sim[w;, Q, T, PD]
Q7. L 2—=1
I
= argmin Z(Xi — pQw; — T)'T(X_i — pQw; — ,,.)]
£r.7.p i1

Solve for rotation matrix as before
Solve for translation and scaling factor
; .
D i (xi — pQw;)
I
; .
Zy}:] (X'i - p’J)TQ(WI - “"w)
1
Zi:l(w’i T ’J’w)T(W'i T ,J’“w)
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Learning affine parameters

$, 7+ = argmin Z(X,,- — afffw;. ®,7))! (x; — afffw,, &, 7))
b T =
" B
= argmin Z(Xi — bw,; — T)T(X,,; —Pw, —T)| .
D T =
Affine transform is linear (11 ]
P12
wp vi 10 0 Of |7 ]| _ o
dw; + T = {0 3 0 @ & 1] o | =Ab
P22
gy |

Solve using least-squares solution -

1

b 1=1

b = argmin [Z(X@ — Ab)(x; — Aéb)]
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Learning homography parameters

— argmin
P

= argmin
P

Z(x@f — hom[w;, ®])” (x; — hom[w;, ®])

i I / / J 2 / / £ 2
P11U; + @120; + @13 P21U; + P22V; + P23
E Xi— + | Y

- O31U; + O320; + D33 P31U; + O320; + D33

Homography is not linear — cannot be solved in closed
form. Convert to other homogeneous coordinates

L O11 P12 P13 U;
A | Yi = Go1 (P22 Qo3 U;
1 P31 ¢32 @33 |1

Both sides are 3x1 vectors; should be parallel, so cross product
will be zero

X X Pw =0



Learning homography parameters

X X Pw = (
Write out these equations in full

Y(D31U + G320 + O33) — (D21U + D220 + D23)
(P11u + @120 + P13) — 2(P31U + P32V + P33)
(P21 + G220 + P23) — Y(P11U + P12V + P13)

—

There are only 2 independent equations here — use a
minimum of four points to build up a set of equations
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Learning homography parameters

] o | @1
0 0 0 —ur —v1 =1 griwr 9101 Y1 | |gy,
u U 1 0 0 0 —riuy —Iivr —a @13
0 0 0 —wux —v2 —1 yYaus Y2v2 2 (52 1
21 ,’!E —'ollc —"‘./“‘ — ¥ “"
ug vz 10 0 0 —2yup —Zo¥y —T2| |goy| =0
; : : : : P23
0O 0 0 —ur —vr —1 yrur  yrvr  Yr LA
ur vy 1 0 0 0 -—zrur —zrvr —z1] |93
| P33 ]

e These equations have the form Ap =0, which we need
to solve with the constraint ;7' — 1
 Thisis a “minimum direction” problem

—  ComputeSVD A = ULV?
—  Take last column of V

 Then use non-linear optimization



Inference problems

a) 19.4 cm

W*

David ). C. "lackay 3 8

Information Theory, inference,
and Learning Algorithms

25.2cm

 Given point x* in image, find position w* on object
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Inference

w = argmax [log [Normy [trans[w, 6],0°1]]]
— argmin {(X — trans|w, 9})T (x — trans[w, Q)D}

In the absence of noise, we have the relation x = trans|w, 6],
or in homogeneous coordinates

G111 P12 P13 u
G211 Q22 Qa3 |V
31 P32 ¢33] |1

P
— < =
|

To solve for the points, we simply invert this relation

u 011 012 Q13 x
Nlv|l = |do1 oo o3 Y
1 O31 Q32 @33 1
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Structure

Transformation models

Learning and inference in transformation models

Three problems

— Exterior orientation
— Calibration
— Reconstruction

Properties of the homography
Robust estimation of transformations
Applications

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

35



Problem 1: exterior orientation
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Z log [Pr(x;|w;, A, ,T)]
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1
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Problem 1: exterior orientation

 Writing out the camera equations in full

T Or Y Ox| w1 wi2 T2| |u
A Y| = N o @y 5y W21 W22 Ty
1 0 0O D w31 W39 T» 1

e

®11 Q12 Q13 U
— (;'*':)21 @22 (’)23 v
(j)gl (,,-'532 0‘33 1

 Estimate the homography from matched points
* Factor out the intrinsic parameters & = A~'®
Oy Do s Wit Wiz T
Oy Phy Py = A w2 wa Ty
05 QPhy Qg W31 Ws2 T



Problem 1: exterior orientation

i ! i/ N
P11 P12 P13 Wit Wi2 T
Ny A N — / ey - )
Va1 P22 Po3| = A war W Ty
P31 O30 O3 W31 Ws2 T

 To estimate the first two columns of rotation matrix, we
compute this singular value decomposition
1y B

L Ll _ v
P31 ¢ | = UL
L/ L/
| P31 P32

e Then we set

EE
woa1 wooi =U [0 1 v’
\j—d‘%l f«uazJ {



Problem 1: exterior orientation

* Find the last column using the cross product of first two
columns

 Make sure the determinantis 1. If it is -1, then multiply
last column by -1.

* Find translation scaling factor between old and new values

Zm 1Zn 1 mn/u/mn

I __
A= 6

* Finally, set T = [¢)5, dhs, dh3]T /N



Structure

Transformation models

Learning and inference in transformation models

Three problems

— Exterior orientation
— Calibration

— Reconstruction

Properties of the homography
Robust estimation of transformations
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Problem 2: calibration

a) b)
(22, T2] -
-A-l [nlaTl] dddddddddd A2 """"""" I
P o A=
3 [ HEPP,
————————— | 0 vl
,,,,,, Xe =T X ‘ -
p_ e S ppra— .
Optical =~ =~___ ) w Optical e
center I ~~~~~ center | ----------------
~—_ X T — T o~__
Camera e \ Camera R
plane T plane
I J
~
A = argmax max E g log [Pr(x;j|w;, A, €, T;)]
A Qi...7.711...0 |* .
1=1 5=1
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Calibration

I J

A = argmax max Z Z log [Pr(x;j|wi, A, ;,7;)]
A Qi..7.7T1... i1 j—1 ‘

One approach (not very efficient) is to alternately

 Optimize extrinsic parameters for fixed intrinsic
I
Qjﬁ ’f'j — argimax Z lOg [P’r(x@-j|wij A, Qja ’Tj)]

Q.75 Li=1

 Optimize intrinsic parameters for fixed extrinsic
1 J
A = argmax {Z Z log [Pr(x;;|w;, A, Qj,'rj)]}
A

i=1 j=1

Then use non-linear optimization.

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
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Check code

OpenCV-Python Tutorial:

https://docs.opencv.org/3.0-
beta/doc/py_tutorials
/py_tutorials.html (official)

> Camera Calibration and 3D Reconstruction
> Pose Estimation

OpenCV-Python Tutorial (Japanese):

http://lang.sist.chukyo-
u.ac.jp/classes/OpenCV/

44
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Learning and inference in transformation models

Three problems

— Exterior orientation
— Calibration

— Reconstruction

Properties of the homography
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Problem 3 - reconstruction

. ——
-
Optical
center
Camera
plane e

in world

Transformation between plane and image:

[@11 012 @13-‘
T = (021 @22 Qo3| =
L@m P32 @33J

|V(D¢r Y 53? W11 Wi Tx

O (,Dy 53; w?l CU'QQ Ty
o 0B J

Point in frame of reference of plane: w =T 'x
Point in frame of reference of camera w/ = Qw + 7
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Structure

Transformation models
Learning and inference in transformation models

Three problems

— Exterior orientation
— Calibration

— Reconstruction

Properties of the homography
Robust estimation of transformations
Applications
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Transformations between images

So far we have considered
transformations between the
image and a plane in the world

Now consider two cameras
viewing the same plane —

There is a homography between
camera 1 and the plane and a
second homography between i Optical™,
camera 2 and the plane o center 1 center2 g

It follows that the relation between the two images is also a
homography
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Properties of the homography

Homography is a linear transformation of a ray

H in b izz} H
1

P31 P32 ¢33| |1
Equivalently, leave rays and linearly transform image plane — all images formed by
all planes that cut the same ray bundle are related by homographies.

Image

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
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Camera under pure rotation

Special case is camera under pure rotation.
Homography can be showed tobe & — A, A ~*

Image plane
after rotation

Image plane “~=~-.____
before rotation Sreealld

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
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Learning and inference in transformation models

Three problems

— Exterior orientation
— Calibration

— Reconstruction

Properties of the homography
Robust estimation of transformations
Applications
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Robust estimation

e Least squares criterion is not
robust to outliers

® For example, the two outliers
N here cause the fitted line to be
.. quite wrong.

@ One approach to fitting under
® these circumstances is to use
® RANSAC — “Random sampling by
® consensus”

X
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oo R

RANSAC

Randomly choose a minimal subset of data.
Use this subset to estimate the parameters.
Compute the number of inliers for this model.
Repeat steps 1-3 a fixed number of times.

Re-estimate model using inliers from the best fit.
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3 Inliers

Xz

RANSAC

[ ]
o ®
&
\..
i Y
~e
[ ]
\
o
o o
8 Inliers
xZr

12 Inliers

)

Figure 14.16 RANSAC procedure. a) We select a random minimal subset
of points to fit the line (red points). We fit the line to these points and
count how many of the other points agree with this solution (blue points).
These are termed inliers. Here there are only 3 inliers. b.c) This procedure
is repeated with different minimal subsets of points.
iterations we choose the fit that had the most inliers. We refit the line using
only the inliers from this fit.

After a number of

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

54




Fitting a homography with RANSAC

Original images Initial matches Inliers from RANSAC
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Piecewise planarity

Many scenes are not planar, but are nonetheless piecewise planar
Can we match all of the planes to one another?
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Approach 1 —Sequential RANSAC

Problems: greedy algorithm and no need to be spatially coherent

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
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Approach 2 — PEaRL
(propose, estimate and re-learn)

Associate label 1 which indicates which plane we are in
Relation between points x; in imagel and y; in image 2

Pr(x;|y:,l; = k) = Normy, [homly;, ®;], 0"

Prior on labels is a Markov random field that encourages
nearby labels to be similar

Pr(l) = %exp { > widlli - U]

Model solved with variation of alpha expansion algorithm



Approach 2 — PEaRL

Adapted from Isack & Boykov (forth-
coming). (©2011 Springer.

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
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Augmented reality tracking
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Fast matching of keypoints
P2 = Tl o W W |

Figure 14.21 Robust tracking using keypoints. a) Lepetit et al. (2005) pre-
sented a system that automatically tracked objects such as this book. b)
In the learning stage, the regions around the keypoints were subjected to a
number of random affine transformations. c¢) Keypoints in the image were
classified as belonging to a known keypoint on the object, using a tree-based
classifier that compared the intensity at nearby points. Adapted from Lep-
etit et al. (2005). ©2005 [EEE.

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
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Visual panoramas
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Conclusions

Mapping between plane in world and camera is one-to-one
Takes various forms, but most general is the homography

Revisited exterior orientation, calibration, reconstruction
problems from planes

Use robust methods to estimate in the presence of outliers



