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Multiple Cameras
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Structure from motion
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Given 
• an object that can be characterized by I 3D points
• projections into J images

Find
• Intrinsic matrix
• Extrinsic matrix for each of J images
• 3D points



Structure from motion
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For simplicity, we’ll start with simpler problem

• Just J=2 images
• Known intrinsic matrix 



Structure
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• Two view geometry
• The essential and fundamental matrices
• Reconstruction pipeline
• Rectification
• Multi-view reconstruction
• Applications



Epipolar lines
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Epipole
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Special configurations
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Structure
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• Two view geometry
• The essential and fundamental matrices
• Reconstruction pipeline
• Rectification
• Multi-view reconstruction
• Applications



The geometric relationship between the two cameras is 
captured by the essential matrix.

Assume normalized cameras, first camera at origin.

First camera:

Second camera:

The essential matrix
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The essential matrix
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First camera:

Second camera:

Substituting:

This is a mathematical relationship between the points in the 
two images, but it’s not in the most convenient form.



The essential matrix
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Take cross product with τ (last term disappears)

Take inner product of both sides with x2.



The cross product term can be expressed as a matrix

Defining:

We now have the essential matrix relation

The essential matrix
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Properties of the essential matrix
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• Rank 2:

• 5 degrees of freedom

• Non-linear constraints between elements
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Recovering epipolar lines
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Equation of a line:

or

or



Recovering epipolar lines
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Equation of a line:

Now consider 

This has the form                      where 

So the epipolar lines are



Recovering epipoles
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Every epipolar line in image 1 passes through the epipole e1.

In other words                                   for ALL 

This can only be true if e1 is in the nullspace of E.

Similarly:

We find the null spaces by computing                              , and 
taking the last column of      and the last row of        .  



Decomposition of E
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Essential matrix:

To recover translation and rotation use the matrix:

We take the SVD                                 and then we set
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Four interpretations
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To get the different 
solutions, we mutliply
τ by -1 and substitute



The fundamental matrix
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Now consider two cameras that are not normalised

By a similar procedure to before, we get the relation

or

where

Relation between essential and fundamental



Fundamental matrix criterion
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When the fundamental matrix is correct, the epipolar line 
induced by a point in the first image should pass through the 
matching point in the second image and vice-versa.  

This suggests the criterion

If                         and                         then 

Unfortunately, there is no closed form solution for this 
quantity.

Estimation of fundamental matrix
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The 8 point algorithm

2525Computer vision: models, learning and inference.  ©2011 Simon J.D. Prince

Approach:  
• solve for fundamental matrix using homogeneous 

coordinates
• closed form solution (but to wrong problem!)
• Known as the 8 point algorithm

Start with fundamental matrix relation

Writing out in full:

or



The 8 point algorithm
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Can be written as:

where

Stacking together constraints from at least 8 pairs of points, we 
get the system of equations



The 8 point algorithm
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Minimum direction problem of the form                     , 
Find minimum of               subject to                  . 

To solve, compute the SVD                                and then 
set       to the last column of     . 



Fitting concerns
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• This procedure does not ensure that solution is rank 2.  
Solution:  set last singular value to zero.

• Can be unreliable because of numerical problems to do with 
the data scaling – better to re-scale the data first

• Needs 8 points in general positions (cannot all be planar).

• Fails if there is not sufficient translation between the views

• Use this solution to start non-linear optimisation of true 
criterion (must ensure non-linear constraints obeyed).

• There is also a 7 point algorithm (useful if fitting repeatedly 
in RANSAC)



Structure
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• Two view geometry
• The essential and fundamental matrices
• Reconstruction pipeline
• Rectification
• Multi-view reconstruction
• Applications



Two view reconstruction pipeline
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Start with pair of images taken from slightly different viewpoints



Two view reconstruction pipeline
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Find features using a corner detection algorithm



Two view reconstruction pipeline
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Match features using a greedy algorithm



Two view reconstruction pipeline
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Fit fundamental matrix using robust algorithm such as RANSAC



Two view reconstruction pipeline
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Find matching points that agree with the fundamental matrix



Two view reconstruction pipeline
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• Extract essential matrix from fundamental matrix 
• Extract  rotation and translation from essential matrix
• Reconstruct the 3D positions w of points
• Then perform non-linear optimisation over points and 

rotation and translation between cameras



Two view reconstruction pipeline
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Reconstructed depth indicated by color



Dense Reconstruction
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• We’d like to compute a dense depth map (an estimate of the 
disparity at every pixel)

• Approaches to this include dynamic programming and graph 
cuts

• However, they all assume that the correct match for each 
point is on the same horizontal line.

• To ensure this is the case, we warp the images

• This process is known as rectification



Structure
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• Two view geometry
• The essential and fundamental matrices
• Reconstruction pipeline
• Rectification
• Multi-view reconstruction
• Applications



Rectification
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We have already seen  
one situation where the 
epipolar lines are 
horizontal and on the 
same line:

when the camera 
movement is pure 
translation in the u
direction. 



Planar rectification

4040Computer vision: models, learning and inference.  ©2011 Simon J.D. Prince

Apply homographies
and to image 

1 and 2



• Start with       which breaks down as
• Move origin to center of image

• Rotate epipole to horizontal direction

• Move epipole to infinity 

Planar rectification
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Planar rectification
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• There is a family of possible homographies that can be 
applied to image 1 to achieve the desired effect

• These can be parameterized as

• One way to choose this, is to pick the parameter that makes 
the mapped points in each transformed image closest in a 
least squares sense: 

where
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Before rectification

4444Computer vision: models, learning and inference.  ©2011 Simon J.D. Prince

Before rectification, the epipolar lines converge 



After rectification
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After rectification, the epipolar lines are horizontal 
and aligned with one another



Polar rectification
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Planar rectification does not work if epipole lies within the 
image.



Polar rectification
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Polar rectification works in this situation, but distorts the 
image more



Dense Stereo
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Structure
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• Two view geometry
• The essential and fundamental matrices
• Reconstruction pipeline
• Rectification
• Multi-view reconstruction
• Applications



Multi-view reconstruction
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Multi-view reconstruction
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Reconstruction from video
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1. Images taken from same camera; can also optimise for intrinsic 
parameters (auto-calibration)

2. Matching points is easier as can track them through the video

3. Not every point is within every image

4. Additional constraints on matching: three-view equivalent of 
fundamental matrix is tri-focal tensor

5. New ways of initialising all of the camera parameters 
simultaneously (factorisation algorithm)



Bundle Adjustment
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Bundle adjustment refers to process of refining initial estimates 
of structure and motion using non-linear optimisation.

This problem has the least 
squares form:

where:



Bundle Adjustment
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This type of least squares problem is suited to optimisation 
techniques such as the Gauss-Newton method:

Where

The bulk of the work is inverting JTJ.  To do this efficiently, we 
must exploit the structure within the matrix.



Structure
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• Two view geometry
• The essential and fundamental matrices
• Reconstruction pipeline
• Rectification
• Multi-view reconstruction
• Applications



3D reconstruction pipeline
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Photo-Tourism
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Volumetric graph cuts
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Conclusions
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• Given a set of a photos of the same rigid object, it is possible 
to build an accurate 3D model of the object and reconstruct 
the camera positions

• Ultimately relies on a large-scale non-linear optimisation 
procedure.

• Works if optical properties of the object are simple (no 
specular reflectance etc.) 



Stereo matching – simple example
Download and execute tsukuba.py & data/tsukuba_{l|r}.png

https://docs.opencv.org/3.4.2/dd/d53/tutorial_py_depthmap.html



Reporting Assessment 1 – 50pts
Calibrate stereo cameras with chessboard images, and 
estimate a disparity map of rabbit images. The 
instructor selects your target images. Summarize your 
used functions and their explanations, and resulting 
images in your report.  Also submit all the code for 
your implementation. 

(1) Show the undistorted rabbit images. (15pts)
(2) Show the rectified rabbit images. (15pts)
(3) Estimate disparity by local and global matching 

techniques. (20pts)



1. Estimate intrinsic matrices & distorted parameters + 
extrinsic parameters of two cameras:
https://docs.opencv.org/3.4.2/dc/dbb/tutorial_py_calibration.html

retval, cameraMatrix1, distCoeffs1, cameraMatrix2, 
distCoeffs2, R, T, E, F = 
cv2.stereoCalibrate(obj_points, img_points1, 
img_points2, cameraMatrix1, distCoeffs1, 
cameraMatrix2, distCoeffs2, imageSize)

R,T: Extrinsic parameters (1->2)
cameraMatrixN: Intrinsic paremeters
distCoeffsN: distortion parameters

Rectification
https://docs.opencv.org/3.4.2/d9/db7/tutorial_py_table_of_contents_calib3d.html



Rectification
https://docs.opencv.org/3.4.2/d9/db7/tutorial_py_table_of_contents_calib3d.html

2. Estimate Rectification matrix for two cameras: 
R1, R2, P1, P2, Q, validPixROI1, validPixROI2 = 
cv2.stereoRectify(cameraMatrix1, distCoeffs1, 
cameraMatrix2, distCoeffs2, imageSize, R, T, 
flags, alpha, newimageSize)

https://docs.opencv.org/3.4.2/d9/d0c/group__calib3d.html#ga617b1685d4059c6040827800e72ad2b6

flags=0, alpha=1, newimageSize=(h,w) for example

3. Calculate rectification maps: 
map1_l, map2_l = 
cv2.initUndistortRectifyMap(cameraMatrix1, 
distCoeffs1, R1, P1, newimageSize, m1type)

4. Show remapped images: 
Re_TgtImg_l = cv2.remap(TgtImg_l, map1_l, map2_l, 
interpolation) 

https://docs.opencv.org/3.4.2/d9/d0c/group__calib3d.html#ga617b1685d4059c6040827800e72ad2b6


Stereo matching
https://docs.opencv.org/3.4.2/d9/db7/tutorial_py_table_of_contents_calib3d.html

stereo = cv2.StereoSGBM_create(
minDisparity = 32, 
numDisparities = 112 - min_disp,
blockSize = 5, 
P1 = 8*3*window_size**2, 
P2 = 32*3*window_size**2, 
disp12MaxDiff = 1, 
uniquenessRatio = 10, 
speckleWindowSize = 100, 
speckleRange = 32, 
mode = cv2.STEREO_SGBM_MODE_SGBM_3WAY

)
disp = stereo.compute(Re_TgtImg_l, 
Re_TgtImg_r).astype(numpy.float32) / 16.0

For instance: 
StereoBM(block matching): local 
StereoSGBM(semi-global matching): (semi-)global
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