Computer vision: models,
learning and inference

Chapter 16
Multiple Cameras



Photo Tourism
Exploring photo collections in 3D

Noah Snavely Steven M. Seitz  Richard Szeliski
University of Washington Microsoft Research

SIGGRAPH 2006




Structure from motion

Given
* an object that can be characterized by | 3D points {w;};—;
* projections into J images {x;;}:’ 1 et

Find

* Intrinsic matrix A

e Extrinsic matrix for each of J images {;.7,}/_,
e 3D points {wi}i_,

7
= argmax Z Z log|Pr(x;;|w;, A, €, 7T,)]
w. Q2.7 A _?::1 =1
I
= argmax Z log N()lmX pmhole[wi,A7Qj,’rj},azl]]
w, Q.1 A .
T z-:l =1



Structure from motion

For simplicity, we’ll start with simpler problem

e JustJ=2images
e Known intrinsic matrix A
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Epipolar lines
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Special configurations
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The essential matrix

The geometric relationship between the two cameras is
captured by the essential matrix.

Assume normalized cameras, first camera at origin.
% = [1,0]w
/\2)7{2 — [QjT]{fV
1 0 0 0} .
)\1 Y11 = 0O 1 0 O w = U
1) Lo v of [Y] [u]

AMX] =W

First camera:
L1

Second camera: AoXo = OQw + 7T



The essential matrix

First camera:
AMX] =W
Second camera:

AoXo = QW + 7
Substituting:

)\2512 — )\1 qu T

This is a mathematical relationship between the points in the
two images, but it’s not in the most convenient form.



The essential matrix

AoXo = \Ox1 + 7T
Take cross product with t (last term disappears)
)\QT X 5(2 — )\17‘ X Qf(l

Take inner product of both sides with X,.



The essential matrix

The cross product term can be expressed as a matrix

Ty = | T2 0 —7
|—Ty Tz 0
Defining:
E — T><Q

We now have the essential matrix relation

x5 Ex1 =0



Properties of the essential matrix

%3 Ex1 =0

Rank 2: det|E] = 0
5 degrees of freedom

Non-linear constraints between elements

2EE'E — trace(EE' |E =0



The 3 x3 essential matrix captures the geometric relationship between the two
cameras and has rank 2 so that det[E] = 0. The first two singular values of the
essential matrix are always identical and the third is zero. It depends only on the
rotation and translation between the cameras, each of which has 3 parameters, and
so one might think it would have 6 degrees of freedom. However, it tC_ ates on
homogeneous variables X; and X and is hence ambiguous up to secale: multiply-
ing all of the entries of the essential matrix by any constant does not change its
properties. For this reason, it is usually considered as having 5 deprees of freedom.

Since there are fewer degrees of freedom than there are unknowns, the nine en-
tries of the matrix must obey a set of algebraic constraints. These can be expressed
compactly as

2EETE — trace[EET|E = 0. (16.12)

These constraints are sometimes exploited in the computation of the essential ma-
trix, although in this volume we use a simpler method (section 16.4).
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Recovering epipolar lines

Equation of a line:

ar +by+c=0

or - -

or



Recovering epipolar lines

Equation of a line: Ix =0

Now consider igE}El —

This has the form lix1 = 0 where 1 = igE

So the epipolar lines are
~T

, = x E'



Recovering epipoles

Every epipolar line in image 1 passes through the epipole e;.

In other words igEél — () for ALL f(g

This can only be true if e, is in the nullspace of E.

e; = nullE]
Similarly:
ey = null[ET}

We find the null spaces by computing E = ULV, and
taking the last column of V and the last row of U .



Decomposition of E

Essential matrix:

E — TX Q
To recover translation and rotation use the matrix:
0 —1 0
W=1I1 0 0
0o 0 1
We take the SVD F, — ULVT and then we set
r« = ULWU?

Q = UwW v’



We will defer the question of how to compute the essential matrix from a set
of corresponding points until section 16.3. For now, we will concentrate on how to
decompose a given essential matrix E to recover this rotation {2 and translation 7.
This is known as the relative orientation problem.

In due course, we shall see that we can compute the rotation exactly, whereas
it is only possible to compute the translation up to an unknown scaling factor.
This remaining uncertainty reflects the geometric ambiguity of the system; from
the images alone, we cannot tell if these cameras are far apart and looking at a
large distant object or close together and looking at a small nearby object.

To decompose E, we define the matrix

—1

0 (16.18)
0

== R e

0

W=1|]1

0

and then take the singular value decomposition E = ULVT. We now choose

Ty = UMWY
Q = UW VT, (16.19)

It i1s convention to set the magnitude of the translation vector T that i1s recovered
from the matrix 7. to unity. The above decomposition is not obwvious, but it
18 easily checked that multplying the derived expressions for 7. and 2 yields
E = ULV". This method assumes that we started with a valid essential matrix
where the first two singular values are identical and the third is zero. If this is not
the case (due to noise) we can substitute L' = diag[1,1,0] for L in the solution

for 7... For a detailed proof of this decomposition, consult Hartley & Zisserman
(2004).
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Four interpretations
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To get the different
solutions, we mutliply
T by -1 and substitute

W for W1
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The fundamental matrix

Now consider two cameras that are not normalised
MXp = Ay [L O]ﬁf'
)\25(2 — Ag [Q T]ﬁ/‘

By a similar procedure to before, we get the relation

X2 ASTEAT IR =0
x5 Fx1 =0
F=A"EAT = A 7, QA

Relation between essential and fundamental

= A5 FA,

or

where



Figure 15.5 Cost function for estimating fundamental matrix. The point x;1
in image 1 induces the epipolar line l;2 in image 2. When the fundamental
matrix is correct, the matching point x;2 will be on this line. Similarly the
point X;2 in image 2 induces the epipolar line 1;; in image 1. When the
fundamental matrix is correct, the point x;; will be on this line. The cost
function is the sum of the squares of the distances between these epipolar
lines and points (green arrows). This is termed symmetric epipolar distance.
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Estimation of fundamental matrix

When the fundamental matrix is correct, the epipolar line
induced by a point in the first image should pass through the
matching point in the second image and vice-versa.

This suggests the criterion

I
F — argmin dist|x;1, 1; > 1 (dist 25 1; :
a1 [Z ((distheir, Liu))? + (istlxia. 1a])?)
| , ax + by + ¢
If 1l =|a.D,clandX = [iﬁ?y}’r then dist[x, 1] =

Unfortunately, there is no closed form solution for this
guantity.



The 8 point algorithm

Approach:
 solve for fundamental matrix using homogeneous
coordinates
e closed form solution (but to wrong problem!)
e Known as the 8 point algorithm

Start with fundamental matrix relation igFi1 — 0

f11 fio fiz] [xa
Writing out in full: [{II.Z;Q Ui 1] f21 ng fgg Uil
fa1 o fs2 fss] |1

OF ziomi1 fi1+2ioyin fro+xio fis+yioit for +YioVin foo+yio fos +xi1 fa1+yi1 fao+ faz = 0.



The 8 point algorithm

Tioxi1 f11+Tioyi1 fia+Tio fis+yioxit fo1 +Yioyi1 foo+Yio fos+xi1 f31+yi1 fao+ fazg = 0.

Can be written as:

Li0Ti1, TioYils Ti2s Yia il YiolYils Yios Tit, Yi1, L[ =0

where £ = [fi1, fi2, f13, fo1, fo2, fo3, f31, f32, fa3]"

Stacking together constraints from at least 8 pairs of points, we
get the system of equations

T12T11  T12Y11 Ti2 Y2011 Y1211 Y12 X1 Yy 1
TooX21  XT22121 T22  Y22X21  Yool21 Yoo Tl Y21 1

Af = ) |1 f=0.
XX TrYno iz YT Yreyn Yr2o T Yoo 1]
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The 8 point algorithm

1211  T12Y11  T12 Y1211 Y12U11 Y12 T11 Y11

Af L2221 X22Y21  X22  Y22X21 Y22Y21 Y22 T21 Y21

Lr2xXr rreyrn rr2 yrexrr yryrt yre2 i1 yYri

Minimum direction problem of the form Ab = ( ,
Find minimum of |Ab 2 subject to bl=1.

To solve, compute the SVD A = ULVT and then
set b to the last column of V.

i




Fitting concerns

This procedure does not ensure that solution is rank 2.
Solution: set last singular value to zero.

Can be unreliable because of numerical problems to do with
the data scaling — better to re-scale the data first

Needs 8 points in general positions (cannot all be planar).

Fails if there is not sufficient translation between the views

Use this solution to start non-linear optimisation of true
criterion (must ensure non-linear constraints obeyed).

There is also a 7 point algorithm (useful if fitting repeatedly
in RANSAC)
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Two view reconstruction pipeline

Start with pair of images taken from slightly different viewpoints
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Two view reconstruction pipeline

Find features using a corner detection algorithm

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 31



Two view reconstruction pipeline

Match features using a greedy algorithm
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Two view reconstruction pipeline

Fit fundamental matrix using robust algorithm such as RANSAC
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Two view reconstruction pipeline

Find matching points that agree with the fundamental matrix
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Two view reconstruction pipeline

Extract essential matrix from fundamental matrix
Extract rotation and translation from essential matrix
Reconstruct the 3D positions w of points

Then perform non-linear optimisation over points and
rotation and translation between cameras

I 2
Iﬁflj'}" = argmax log| Pr(x;j|w;, A;, ., T)]
w, 2T Z;; !

1

= argmax Zlog [Normxﬂ[pinhole[wi,Al,I,O},JQIH
i=1

w. 2T

I
+ Z log [ Normy,, [pinhole[w;, As, 2, 7],
i=1

ﬂﬂ]



Two view reconstruction pipeline

Reconstructed depth indicated by color
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Dense Reconstruction

We’d like to compute a dense depth map (an estimate of the
disparity at every pixel)

Approaches to this include dynamic programming and graph
cuts

However, they all assume that the correct match for each
point is on the same horizontal line.

To ensure this is the case, we warp the images

This process is known as rectification
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We have already seen

one situation where the

epipolar lines are
horizontal and on the
same line:

when the camera
movement is pure
translation in the u
direction.

Computer vision:

Rectification

models, learning and inference. ©2011 Simon J.D. Prince
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Planar rectification

________________ 1 Image plane
tafter rectification

Apply homographies
$, and P, toimage
1and 2

Image plane
i after rectification
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Planar rectification

e Start with &, which breaks down as &, = T;T,T,
* Move origin to center of image

10 -4,

T, = {0 1 —o‘j

00 1]

e Rotate epipole to horizontal direction

{COS{—Q} —sin[—0] 0
Ty = rin[—@} cos[—0] 0

* Move epipole to infinity



Planar rectification

There is a family of possible homographies that can be
applied to image 1 to achieve the desired effect

These can be parameterized as where

T F =SM
‘1’1[0{} = (I +— s )‘I’QM

One way to choose this, is to pick the parameter that makes
the mapped points in each transformed image closest in a
least squares sense:

argmax Z(hom x;1.®1[a]] —hom[x,2,®5])" (hom[x,;,®; [a]] —hom[x,5,85]) |.

@ i—=1



Now we consider the first image. We cannot simply apply the same procedure
as this will not guarantee that the epipolar lines in the first image will be aligned
with those in the second. It transpires however, that there is a family of possible
transformations that do make the epipolar lines of this image horizontal and aligned
with those in the second image. This family can (not obviously) be parameterized
as

P [a] = (I + exa’ ) B, M, (16.34)

where e; = [],D,D]T is the transformed epipole in the second image, and e« =
[nl.,ag,ag]T is a 3D vector that selects the particular transformation from the
family. The matrix M comes from the decomposition of the fundamental matrix
into F' = SM, where S is skew symmetric (see below). A proof of the relation in
equation 16.34 can be found in Hartley & Zisserman (2004).

Multiple View
Geometry

in computer vision

REichard Hartley and Andiew Disssiman




Before rectification

Before rectification, the epipolar lines converge
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After rectification

After rectification, the epipolar lines are horizontal
and aligned with one another
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Polar rectification

Planar rectification does not work if epipole lies within the
Image.
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g ‘orodids woxy s[duy

Polar rectification

Distance from epipole, r Distance from epipole, r

Polar rectification works in this situation, but distorts the
image more
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Dense Stereo
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Multi-view reconstruction
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Multi-view reconstruction

f) frame number —

~<— 1oquINU 2INIBYJ
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Reconstruction from video

Images taken from same camera; can also optimise for intrinsic
parameters (auto-calibration)

Matching points is easier as can track them through the video
Not every point is within every image

Additional constraints on matching: three-view equivalent of
fundamental matrix is tri-focal tensor

New ways of initialising all of the camera parameters
simultaneously (factorisation algorithm)



Bundle Adjustment

Bundle adjustment refers to process of refining initial estimates
of structure and motion using non-linear optimisation.

T
6 = argmax Z Z log[Pr(x;j|wi, A, Q;,T,;)]
0 =1 =1
1
— argmax ZZlog [Normy,  [pinhole[w;, A, Q;, 7], 0°1]]
0 , _ '
=1 5=1
This problem has the least where:
squares form: “x11 — pinhole[w, A, 2, 7]
N . T X192 — pinhole[wl, A QQ, TQ}
0 = argminz” z z =
9 ;
| X1 — Piﬂh()le[wfs A- QJ: TJ}_




Bundle Adjustment

This type of least squares problem is suited to optimisation
techniques such as the Gauss-Newton method:

— n (r)
t] _ plt—1] T\—1YJ
0" = 0" 4+ \JTT) T

Where
o Oz-m-

me n T
h 895’1

The bulk of the work is inverting J7J. To do this efficiently, we
must exploit the structure within the matrix.

- JTY., JTJq
=137y Ty
OQYvYw OJN
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3D reconstruction pipeline

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
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Photo-Tourism

w A b 2 [it] B "1;

Snavely et al. (2006)

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 57



Volumetric graph cuts

Adapted from Vogiatzis et al. (2007)
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Conclusions

Given a set of a photos of the same rigid object, it is possible
to build an accurate 3D model of the object and reconstruct
the camera positions

Ultimately relies on a large-scale non-linear optimisation
procedure.

Works if optical properties of the object are simple (no
specular reflectance etc.)



https://docs.opencv.org/3.4.2/dd/d53/tutorial_py_depthmap.html

Stereo matching — simple example

Download and execute tsukuba.py & data/tsukuba_{l|r}.png

Ciriginal irmsge

DHaparity Eap

import numpy as np
import cv? as cv
from matplotlib import pwplot as plt

cv. imread( tsukuba |.pneg’,0)
cv. imread( tsukuba_r.pneg’,0)

imgl
imgR

stereo = cv.StereoBM createlnumDisparities=16, blockSize=15]
dizsparity = stereo.compute(imel, imeR)

plt. imshow(disparity, grav’)

plt. show()



Reporting Assessment 1 — 50pts

Calibrate stereo cameras with chessboard images, and
estimate a disparity map of rabbit images. The
instructor selects your target images. Summarize your
used functions and their explanations, and resulting
images in your report. Also submit all the code for
your implementation.

(1) Show the undistorted rabbit images. (15pts)
(2) Show the rectified rabbit images. (15pts)

(3) Estimate disparity by local and global matching
techniques. (20pts)



Rectification

https://docs.opencv.org/3.4.2/d9/db7/tutorial_py table of contents_calib3d.html

1. Estimate intrinsic matrices & distorted parameters +

extrinsic parameters of two cameras:
https://docs.opencv.org/3.4.2/dc/dbb/tutorial_py calibration.html

retval, cameraMatrixl, distCoeffsl, cameraMatrix2,
distCoeffs2, R, T, E, F =
cv2.stereoCalibrate(obj points, Img pointsl,
Img_points2, cameraMatrixl, distCoeffsl,
cameraMatrix2, distCoeffs2, 1mageSize)

e

R,T: Extrinsic parameters (1->2)
cameraMatrixN: Intrinsic paremeters
distCoeffsN: distortion parameters



Rectification

https://docs.opencv.org/3.4.2/d9/db7/tutorial_py_table_of contents_calib3d.html

2. Estimate Rectification matrix for two cameras:

R1, R2, P1, P2, Q, validPixROI1, validPiIxROI2 =
cv2.stereoRectify(cameraMatrixl, distCoeffsl,
cameraMatrix2, distCoeffs2, imageSize, R, T,
flags, alpha, newimageSize)

https://docs.opencv.org/3.4.2/d9/d0c/group calib3d.html#ga617b1685d4059c6040827800e72ad2b6
flags=0, alpha=1, newimageSize=(h,w) for example

3. Calculate rectification maps:

mapl 1, map2 I =
cvZ2.inittuUndistortRectifyMap(cameraMatrixl,
distCoeffsl, R1, P1l, newimageSize, mltype)

4. Show remapped images:
Re Tgtimg 1 = cv2.remap(Tgtimg 1, mapl I, map2 1,
interpolation)


https://docs.opencv.org/3.4.2/d9/d0c/group__calib3d.html#ga617b1685d4059c6040827800e72ad2b6

Stereo matching

https://docs.opencv.org/3.4.2/d9/db7/tutorial_py table_of contents_calib3d.html

stereo = cv2.StereoSGBM_create(
minDisparity = 32,
numDisparities = 112 - min_disp,
blockSize = 5,
P1 = 8*3*window_size**2,
P2 = 32*3*window_size**2,
displ2MaxDiff = 1,
uniguenessRatio 10,
speckleWindowSize = 100,
speckleRange = 32,
mode = cv2.STEREO_SGBM_MODE_SGBM_3WAY

TH=

)
disp = stereo.compute(Re _Tgtimg_ 1,

Re Tgtimg r).astype(numpy.float32) / 16.0

For instance:
StereoBM(block matching): local
StereoSGBM(semi-global matching): (semi-)global
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