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learning and inference
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Motivation: fitting shape model

Figure provided by Tim Cootes
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What is shape?

e Kendall (1984) — Shape “is all the geometrical
information that remains when location scale
and rotational effects are filtered out from an

object”
* In other words, it is whatever is invariant to a
similarity transformation



Representing Shape

* Algebraic modelling
— Line:
ax+by+c =70
— Conic:

a B oyl |«
[T Y 1] g o €| {yl =0
voe ¢ !

— More complex objects? Not practical for spine.



Landmark Points
a) b) o%5%s gy
ey
N

* Landmark points can be thought of as discrete samples
from underlying contour

— Ordered (single continuous contour)
— Ordered with wrapping (closed contour)
— More complex organisation (collection of closed and open)



Snakes

* Provide only weak information: contour is smooth
* Represent contour as N 2D landmark points

W = [wy,wWs,..., Wy|

e We will construct terms for

— The likelihood Pr(x|W) of observing an image x given
landmark points W. Encourages landmark points to lie on
border in the image

— The prior Pr(W) of the landmark point. Encourages the
contours to be smooth.



Snakes

Initialise contour and let it evolve until it grabs onto an object
Crawls across the image — hence called snake or active contour
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Snake likelihood

N
Pr(x|W) H exp [sobel [x, w,,|]
n=1
Has correct properties (probability high at edges), but flat in
regions distant from the contour. Not good for optimisation.



Snake likelihood (2)

“

Compute edges (here using Canny) and then compute distance
image — this varies smoothly with distance from the image

Pr(x|W) H exp [—(dist [x, w,])?]

n=1



Prior

Encourages smoothness
N

Pr(W) H exp |« space|w, n| 4+ [ curve|w, n|
n—=1

— Encourages equal spacing

space[w,n] =

2
(Wy, — Wy 1) (W, — W,
_ ( =1 \/ i ;\] 1 ( ° - 1) - \/(Wn — W'n.—l)T(W'n. - Wn,—l))

— Encourages low curvature

CUI‘VG[Wj ?’Z} — _(Wn—l _ 2Wn + W'rz+1)T(W7L—1 — wan, + W7L+1)
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Inference

* Maximise posterior probability

W = argmax [Pr(W|x)] = argmax |Pr(x|W)Pr(W)]
W W

— arg&lax log|Pr(x|W)]| + log| Pr(W)]]

* No closed form solution
* Must use non-linear optimisation method
* Number of unknowns = 2N



Snakes

Notice failure at nose — falls between points.
A better model would sample image between landmark points
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Inference

Maximise posterior probability
W = argmax [Pr(W|x)] = argmax [Pr(x|W)Pr(W)]
W W
= argmax [log[Pr(x|W)] + log|Pr(W)]]
W

Very slow. Can potentially speed it up by changing
spacing element of prior:

2

Space[wj 77} = (Ns — \/(Wn - w-'n,—l)T(wn - wnl))

Take advantage of limited connectivity of associated
graphical model



Relationships between models

Snakes

Problem 1

Cannot specify
shape

Problem 2

Cannot adapt

to shape variation

Problem 3

Does not model
articulation

Articulated models

Problem 4

2D model
only

Problem 5

Doesn't model
texture

Problem 6

Linear model
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Non-linear shape models
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Shape template model

N

n=1

Shape based on landmark points W = {w,,
These points are assumed known

Mapped into the image by transformation transh;vj \IJ}
What is left is to find parameters of transformation W
Likelihood is based on distance transform:

N
Pr(x|W, ®) o [T exp {— (dist [x, trans[w,, mp}ﬂ
n=1

No prior on parameters (but could have one)



Shape template model
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Inference

Use maximum likelihood approach

U — argmaX[L} = argmax [log [Pr(x|W, ¥)]]
o o

N

= argmax Z — (dist [Xg trans[wﬂ,“ ‘I’H)2
VG

No closed form solution

n=1

Must use non-linear optimization

Use chain rule to compute derivatives
2 0w’

oL NS d(dist[x, w),]) gn
N Z Z ow'’ ow

n=1j5=1 gn

where w/ = trans|w,,, ¥|



Iterative closest points

* Find nearest edge point to
each landmark point

 Compute transformation
in closed form

* Repeat
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Statistical shape models

* Also called
— Point distribution models
— Active shape models (as they adapt to the image)

e Likelihood:
N

Pr(x;|w;) H exp [—(dist x;, trans|w,,,, \Il@]])Q]

n=1

* Prior:
Pr(w;) = Normy, |, X

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

22



Learning

e Usually, we are given the examples after they

have been transformed
/

w, = trans|w;,, ¥,

 Before we can learn the normal distribution, we
must compute the inverse transformation

v

* Procedure is called generalized Procrustes
analysis

w;, = trans|/w;, .




Generalized Procrustes analysis

Training data

Computer vision: models, learning an

Before alignment

di

nference. ©2011 Simon J.D. Prince

After alignment
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Generalized Procrustes analysis

Alternately

— Update all transformations to map landmark points
to current mean

J—

"N
Y. = argmin E trans(w/, W] — p,

1

2

‘P?_ | n=1

— Update mean to be average of transformed values,

~

N
L = argmin E ’trans W
n=1

/

n? \Ilz_} — Ky ’2

Then learn mean and variance parameters.



Inference

 Map inference:

W = argmax
W

\\
n=1

N
max [Z — (dist [x;, trans[w,,, ®]])° + log[Normy, [, ]|

* No closed form solution
* Use non-linear optimisation
e Or use ICP approach

 However, many parameters, and not clear they
are all needed

* more efficient to use subspace model




Face model

< o
5 2

Three samples from learned model for faces
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Subspace shape model

e Generate data from model:

w;, = p+Ph;+e
— Lt is the mean shape
— the matrix & = [, ¢, ..., ¢ | contains K

basis functions in it columns
— €; is normal noise with covariance 021

e Can alternatively write

K
Wi = i+ Y dphite
k=1



Approximating with subspace

Subspace model
K
W, = M+ E Qbk: h‘?ﬁk + €;
k=1

Can approximate an vector w with a weighted sum of
the basis functions

K
W; ~ M + § (D/'a ] Lik
k=1

Surprising how well this works even with a small
number of basis functions



Subspace shape model

a)

[
&> <>

[}
] 0

L=

b) Sq. Error = 2.242

0 basis functions

C)

Sq. Error = 1.650

1 basis function

d) Sq. Error = 0.574

=N
$op ¢ <P

L]
® _ @

=

2 basis functions

e) Sq. Error = 0.532

=N

% =

LT

3 basis functions

f)

oo

Sq. Error = 0.494

<N

LT

4 basis functions
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Probabilistic PCA
Generative eq: W, - M -+ ‘I’hi + €;

Probabilistic version:

Pr(w;|h;, u, ®. 02) = Normy,, ¢ + ®@h;, JQI}

Add prior: Pr(h;) = Normy, [0, I]

Density: P”]“(Wg’_) /PT(Wihi)P"}“(hi)dhi

— / Normy, [t + ®@h;, o°I]Normy, [0, I]dh,;

=  Normy, [p, 8B + o°1].
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iT.h1

Probabilistic principal component analysis

The particular subspace model that we will apply here is known as probabilistic
principal component analysis or PPCA for short. To define the model, we re-
express equation 17.20 in probabilistic terms:

Pr(w;|h;, pu, ®,62%) = Normy,, [ + ®h;, 1], (17.23)

where gt is a 2V x 1 mean vector, € is a 2N x K matrix containing K basis functions
in its columns, and o2 controls the degree of additive noise. In the context of this
model, the basis functions are known as principal components. The K x1 hidden
variable h; weights the basis functions and determines the final positions on the
subspace, before the additive nolse component is added.

To complete the model, we also define a prior over the hidden variable h;, and
we choose a spherical normal distribution for this:

Pr(h;) = Normy, [0, 1]. (17.24)

By marginalizing the joint distribution Pr(w;, h;) with respect to the hidden
variable h;, we can retrieve the prior density Pr(w;), and this is given by

Piwy] = f Pr(w;|he) Pr(hy)dh,

= chrrmw:.[p: + ®h;, o*TI|Normy, [0, I]dh;
— Normy,[p. 837 + 1] (17.25)

This algebraic result is not obvious; however, it has a simple interpretation. The
prior over the landmark points w; is once more normally distributed, but now the
covariance is divided into two parts: the term ®®7, which explains the variation
in the subspace (due to shape changes), and the term o’I, which explains any
remaining variation in the data (mainly noise in the training points).
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Learning Probabilistic PCA

Learn parameters (1, ® and 02 from data {w;}/_;,

where w; = [wl wh ... wi]l.
I
D im1 Wi
Learn mean: p= ==
Il

Thenset W = [w; — i, wo — u,..., Wy — | and
compute eigen-decomposition

WWwW1 = UL?u?
Choose parameters | D
~2 L 2
o o D - K Z ij
j=K+1
Ug (L% — 6%1)1/2

Fal

P



Properties of basis functions

Learning of parameters based on eigen-decomposition:

WW! = UL?U’

Parameters
| D
~2 2
g - D-K Z ij
j=K+1
d = Ug(L% —521)Y?
Notice that:

* Basis functions in g are orthogonal
* Basis functionsin ¢ are ordered



Learned hand model

+ve weighting of PC 1

c)

+ve weighting of PC 2

e)

o
+ve weighting of PC 3

b)

-ve weighting of PC 1

d)

-ve weighting of PC 2

f)

-ve weighting of PC 3
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Learned spine model

a) . ~— b) B} & " | I e\ ]
3 | |2 - =l
| ) ) = Nl
-~ v N | e - i
. ) - .

C = (= =
- || 2 - o
(f\j (:] | ﬁ j (/:3
\ 2 P ]
) J D | "
Mean Manipulating first Manipulating second

principal component

principal component
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Inference

To fit model to an image:

h ' 0_2

al ISt [x;, trans nh, :
[Z (_ (dist [x;, trans[p,, + &,h, ¥])) ) —|—log[Normh[0.IH]

\ ) k N
Y Y

likelihood prior

h = argmax [max

n=1

ICP Approach:

* Find closest points to current prediction
 Update weightings h

* Find closest points to current prediction
* Update transformation parameters y



Inference

1. Update weightings h

~

N
h = argmax Zlog[Pr(yn,\h)?\Il}—|—log[Pr(h)}
h

| n=1

h

N
= argmax Z — (yn — trans|p,, + @, h, lI!D2 /o* —log[h' h]
| n=1

If transformation parameters can be represented as a matrix A

N -1 N
h = (021 +y @zATA@n) > A®,(y,—Ap—b)

n=1 n=1

2. Update transformation parameters y
e Using one of the closed form solutions
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Fitting model

Initial 2 iterations 6 1terations 18 1terations

Figure provided by Tim Cootes

Much better to use statistical classifier instead of just
distance from edges
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3D shape models

s— Lateral ventricles
B Caudate neucleus

B Putamen
M Pallidum

@ Thalamus

¢ Hippocampus

& ¥ DBrain stem

Accumbens

Babalola et al. (2008)
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Structure

* Snakes

 Template models

e Statistical shape models
* 3D shape models
* Models for shape and appearance
* Non-linear models

e Articulated models

* Applications
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Statistical models for shape and
appearance

d) f) \
Figure provided by Tim Cootes
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Statistical models for shape and

dppearance
Pr(h;) = Normy,|0,]]
Pr(w;|h;) = Normy,|p, + ®,h;, 0,3,1]

Pr(x;|w;, h;) Normy, [warp[p, + ®,h;, w;, ¥,], 021

1. We draw a hidden variable h from a prior
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Statistical models for shape and
appearance

Pr(h;) Normy, [0, I]
Pr(w;lh;) = Normy,[p, + ®.,h;, 02 1]

Pr(x;|w;, h;) Normy, [warp[p, + ®,h;, w;, ¥,], 021

1. We draw a hidden variable h from a prior
2. We draw landmark points w from a subspace model
3. We draw image intensities X.
 Generate image intensities in standard template shape
* Transform the landmark points (parameters )
* Transform the image to landmark points
 Add noise



Shape and appearance model

b)

Shape mode| Intensity model Shape and

Adapted from Stegmann (2002) Intensity
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Warping images

b)

Adapted from Stegmann (2002)

Piecewise affine
transformation

Triangulate image points
using Delaunay
triangulation.

Image in each triangle is
warped by an affine
transformation.
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Learning

Pr(h;) Normy, |0, I
Pr(w;/h;) = Normy, @, + ®uh;, cr,i, I]
Pr(x;|w;, h;)

Normy, [warp[p, + ®,h;. w;, ¥,], 021

Goal is to learn parameters :
2 2
{H’w? (I)’lU? Owr Mgy (I)fﬂ? Um}
Problem
 We are given the transformed landmark points
* We are given the warped and transformed images

Solution
 Use Procrustes analysis to un-transform landmark points
 Warp observed images to template shape
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Learning

Now have aligned landmark points w, and aligned images x,
we can learn the simpler model:

Pr(h;) = Normy,|0,]]
Pr(w;|h;) = Normy,[p,, + ®,h;, 0 1]
Pr(x;lh;) = Normy,[u, + ®,.h; o°1].

Can write generative equation as:
W, _ Ko, + (I)w hfzﬁ 4 €wi
X4 L. P T €

Has the form of a factor analyzer x’ = ;J,’ 1 d'h + €’
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Inference

Likelihood of observed intensities

Pr(x/h) = Normy[warp[u, + ®,h, u + ®h, ¥, o21]

To fit the model use maximum likelihood

h, ¥ = argmax [log [Pr(x|h)]
h. ¥

= argmin [(x—warp[u,+P.h, pn,+®,h, ¥) g
h, W

(X—warp [”‘:r ‘I‘(I)J::h: oy —I_(I)’wh? \I’} ﬂ

This has the least squares form

f(6] = z[6]" =[]
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Inference

This has the least squares form

f10] = z[0]" z[0)
Use Gauss-Newton method or similar

ol = gl'~ !l A(JTJ)—lg—g

Where the Jacobian J is a matrix with elements

azm
J’mn —
d0,,




Statistical models for shape and
appearance

Figure provided by Tim Cootes
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Non-linear models

The shape and appearance models that we have
studied so far are based on the normal
distribution

But more complex shapes might need more
complex distributions

— Could use mixture of PPCAs or similar

— Or use a non-linear subspace model

We will investigate the Gaussian process latent
variable model (GPLVM)

To understand the GPLVM, first think about PPCA
in terms of regression.




PPCA as regression

PPCA model:
Pr(w|p, ®,0°) = / Pr(w,h|p, ®,0%)dh
_ /'pr(wh,p,@,a?)m(h)dh
— / Normy, [t + ®h, 0°I]Normy, [0, I]dh.

 First term in last equation looks like regression
* Predicts w for a given h
 Considering each dimension separately, get linear regression

Pr(wg|h, p, @, 02) = Normyy,, [ftqg + Cbgh? 02}




PPCA as regression

Pr(w|h)

Joint probability Regress 1% Regress 2n¢
distribution dimension against dimension against
hidden variable hidden variable



Gaussian process latent variable model

* |dea: replace the linear regression model with
a non-linear regression model

* As name suggests, use Gaussian process
regression

* Implications
— Can now marginalize over parameters pu and @
— Can no longer marginalize over variable h



GPLVM as regression

Pr(wy,ws) Pr(wi|h)

Joint probability Regress 1% Regress 2n¢
distribution dimension against dimension against
hidden variable hidden variable
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Learning

* In learning the Gaussian process regression
model, we optimized the marginal likelihood
of the data with respect to the parameter c?2.

o2

argmax [Pr(w|X,o%)]

T2

argmax [/ Pr(w|X, ®,0%)Pr(®)d®

(_T‘_

argmax |Normy, [0, JﬁK[X? X] + o°1]]

o2



Learning

* Inlearning the GPLVM, we still optimized the
marginal likelihood of the data with respect to the
parameter o2, but must also find the values of the
hidden variables that we regress against .

H,02 = argmax [P-T'(WﬁH-,UQ)]
H.o2

— argmax /PT’(WX,(I).JQ)PT(@)PT‘(H)CZ@

H, o2 |
T B I
— argmax H Normy,, |0, O’ﬁK[H H] + o°1] r Normy, [0, I
Ho®  |g=1 i=1

e Use non-linear optimization technique



Inference

* To predict a new value of the data using a hidden variable

Pr(w;h* H,W) =

2 2 5} L
ot Tp * Op * Tp
Norm,: | =K[h* Hlweq — —K[h* H] (K[H.H} + —21) K[H, Hw,,
‘ g g g
. —1
‘ (T2 ‘
o-K[h* h*] — oo K[h*, H] (K[H. H] + —{;I) K[H,h*] + o”
g

 To compute density

D
Pr(w) = H /Pr(w;}

d=1"
e Cannot be computed in closed from

h*, H, W)Pr(h*)dh*

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
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GPLVM Shape models

e @

Huang et al. (2011). (©2011 IEEE.
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Articulated Models

Transformations of parts applied one after each other

Known as a kinematic chain

e.g. Foot transform is relative to lower leg, which is
relative to upper leg etc.

One root transformation that describes the position of
model relative to camera



Adapted from Stenger et al. (2001a). (©2001 IEEE.
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Articulated Models

* One possible model for an object part
is a quadric

* Represents spheres, ellipsoids,
cylinders, pairs of planes and others

* Make truncated cylinders by clipping
with cylinder with pair of planes

* Projects to conic in the image

U1 e s s | |2
1 1%2 Us W6 YT U
[.'r T l} o 71 =0
w3 YPe Yy g 2
vy U7 e P10 |1
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3D morphable models

€e
€

Adapted from Blanz & Vetter (2003). (©2003 IEEE
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3D morphable models

Adapted from Blanz & Vetter (1999).

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
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3D morphable models

—— yaw

-0.9
-] T
T’ T roll: -0.1 ;};

pitch

. >
Matthews et al. (2007). (©2007 Springer.

LIV ) -
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3D body model

Adapted from Anguelov et al. (2005). ©2005 ACM
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3D body model applications
_ -- 5,‘, ,‘ P | -

Adapted from Anguelov et al. (2005). (©2005 ACM
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Conclusions

* Introduced a series of models for shape

* Assume different forms of prior knowledge
e Contour is smooth (snakes)
e Shape is known, but not position (template)
e Shape class is known (statistical models)
e Structure of shape known (articulated model)

* Relates to other models
* Based on subspace models
* Tracked using temporal models



