
110
Augmented Reality

In this chapter, you are going to learn about augmented reality and how you can use it to
build cool applications. We will discuss pose estimation and plane tracking. You will learn
how to map the coordinates from 3D to 2D, and how we can overlay graphics on top of a
live video.

By the end of this chapter, you will know:

The premise of augmented reality
What pose estimation is
How to track a planar object
How to map coordinates from 3D to 2D
How to overlay graphics on top of a video in real time

What is the premise of augmented reality?
Before we jump into all the fun stuff, let's understand what augmented reality means. You 
will have probably seen the term augmented reality being used in a variety of contexts. So,
we should understand the premise of augmented reality before we start discussing the
implementation details. Augmented reality refers to the superimposition of computer-
generated input, such as imagery, sounds, graphics, and text, on top of the real world.

toyo
ハイライト表示



Augmented Reality Chapter 10

[ 196 ]

Augmented reality tries to blur the line between what's real and what's computer-generated
by seamlessly merging information and enhancing what we see and feel. It is actually
closely related to a concept called mediated reality, where a computer modifies our view of
reality. As a result of this, the technology works by enhancing our current perception of
reality. Now, the challenge here is to make it look seamless to the user. It's easy to just
overlay something on top of the input video, but we need to make it look as though it is
part of the video. The user should feel that the computer-generated input closely reflects the
real world. This is what we want to achieve when we build an augmented reality system.

Computer vision research in this context explores how we can apply computer-generated
imagery to live video streams so that we can enhance the perception of the real world.
Augmented reality technology has a wide variety of applications, including, but not limited
to, head-mounted displays, automobiles, data visualization, gaming, construction, and so
on. Now that we have powerful smartphones and smarter machines, we can build high-end
augmented reality applications with ease.

What does an augmented reality system look
like?
Let's consider the following figure:

toyo
ハイライト表示

toyo
ハイライト表示

toyo
ハイライト表示

toyo
ハイライト表示



Augmented Reality Chapter 10

[ 197 ]

As we can see here, the camera captures real-world video to get the reference point. The
graphics system generates the virtual objects that need to be overlaid on top of the video.
Now, the video-merging block is where all the magic happens. This block should be smart
enough to understand how to overlay the virtual objects on top of the real world in the best
way possible.

Geometric transformations for augmented
reality
The result of augmented reality is amazing, but there are a lot of mathematical things going
on underneath. Augmented reality utilizes a lot of geometric transformations and
associated mathematical functions to make sure everything looks smooth. When talking
about a live video for augmented reality, we need to precisely register the virtual objects on
top of the real world. To understand this better, let's think of it as an alignment of two
cameras: the real one through which we see the world, and the virtual one that projects the
computer-generated graphical objects.

In order to build an augmented reality system, the following geometric transformations
need to be established:

Object-to-scene: This transformation refers to transforming the 3D coordinates of
a virtual object and expressing them in the coordinate frame of our real-world
scene. This ensures that we are placing the virtual object in the right location.
Scene-to-camera: This transformation refers to the pose of the camera in the real
world. By pose, we mean the orientation and location of the camera. We need to
estimate the point of view of the camera so that we know how to overlay the
virtual object.
Camera-to-image: This refers to the calibration parameters of the camera. This 
defines how we can project a 3D object onto a 2D image plane. This is the image
that we will actually see in the end.

toyo
ハイライト表示

toyo
ハイライト表示

toyo
ハイライト表示



Augmented Reality Chapter 10

[ 198 ]

Consider the following image:

As we can see here, the car is trying to fit into the scene but it looks very artificial. If we
don't convert the coordinates in the right way, the car will look unnatural. This is what we
were saying about object-to-scene transformation! Once we transform the 3D coordinates of
the virtual object into the coordinate frame of the real world, we need to estimate the pose
of the camera:



Augmented Reality Chapter 10

[ 199 ]

We need to understand the position and rotation of the camera because that's what the user
will see. Once we estimate the camera pose, we are ready to put this 3D scene on a 2D
image:

Once we have these transformations, we can build the complete system.

What is pose estimation?
Before we proceed, we need to understand how to estimate the camera pose. This is a very
critical step in an augmented reality system and we need to get it right if we want our
experience to be seamless. In the world of augmented reality, we overlay graphics on top of
an object in real time. In order to do that, we need to know the location and orientation of
the camera, and we need to do it quickly. This is where pose estimation becomes very
important. If you don't track the pose correctly, the overlaid graphics will look unnatural.

Consider the following image:

toyo
ハイライト表示

toyo
ハイライト表示



Augmented Reality Chapter 10

[ 200 ]

The arrow indiactes that the surface is normal. Let's say the object changes its orientation:

Now, even though the location is the same, the orientation has changed. We need to have
this information so that the overlaid graphics look natural. We need to make sure that the 
graphic is aligned with this orientation and position.

How to track planar objects
Now that you understand what pose estimation is, let's see how you can use it to track
planar objects. Let's consider the following planar object:



Augmented Reality Chapter 10

[ 201 ]

Now, if we extract feature points from this image, we will see something like this:

Let's tilt the cardboard box:



Augmented Reality Chapter 10

[ 202 ]

As we can see, the cardboard box is tilted in this image. Now, if we want to make sure our
virtual object is overlaid on top of this surface, we need to gather this planar tilt
information. One way to do this is by using the relative positions of the feature points. If we
extract the feature points from the preceding image, it will look like this:

As you can see, the feature points got closer horizontally on the far end of the plane as
compared to the ones on the near end:



Augmented Reality Chapter 10

[ 203 ]

So, we can utilize this information to extract the orientation information from the image. If
you remember, we discussed perspective transformation in detail when we were discussing
geometric transformations, as well as panoramic imaging. All we need to do is use those
two sets of points and extract the homography matrix. This homography matrix will tell us
how the cardboard box turned.

Consider the following image:

First, we will start by selecting the region of interest using the  class, and once
we've done that, we will pass those coordinates to :



Augmented Reality Chapter 10

[ 204 ]

In the following image, the region of interest the green rectangle:



Augmented Reality Chapter 10

[ 205 ]

We then extract feature points from this region of interest. Since we are tracking planar
objects, the algorithm assumes that this region of interest is a plane. That's obvious, but it's
better to state it explicitly! So make sure you have a cardboard box in your hand when you
select this region of interest. Also, it'll be better if the cardboard box has a bunch of patterns
and distinctive points so that it's easy to detect and track the feature points on it.

The  class will receive areas of interest from its method, ,
and will extract those feature points from them, which will allow us to track object
movements:

toyo
ノート注釈
Feature point matching: 
Can ignore the part for Assignment 2 when you know the correspondence between the sets of points



Augmented Reality Chapter 10

[ 206 ]

toyo
ハイライト表示

toyo
ハイライト表示

toyo
ハイライト表示

toyo
ハイライト表示



Augmented Reality Chapter 10

[ 207 ]

Let the tracking begin! We'll move the cardboard box around to see what happens:



Augmented Reality Chapter 10

[ 208 ]

As you can see, the feature points are being tracked inside the region of interest. Let's hold
it at an angle and see what happens:

Looks like the feature points are being tracked properly. As we can see, the overlaid 
rectangle is changing its orientation according to the surface of the cardboard box.

Here is the code to do this:



Augmented Reality Chapter 10

[ 209 ]



Augmented Reality Chapter 10

[ 210 ]

What happened inside the code?
To start with, we have a  class that does all the heavy lifting here. We need
something to detect the features in the image and something to match the features between
successive images. So we use the ORB feature detector and the Flann feature matcher for 
fast nearest neighbor searches within the extracted features. As you can see, we initialize the
class with these parameters in the constructor.

Whenever we select a region of interest, we call the  method to add that to our
list of tracking targets. This method just extracts the features from that region of interest and
stores them in one of the class variables. Now that we have a target, we are ready to track it!

The  method handles all the tracking. We take the current frame and extract
all the keypoints. However, we are not really interested in all the keypoints in the current
frame of the video. We just want the keypoints that belong to our target object. So now our
job is to find the closest keypoints in the current frame.

We now have a set of keypoints in the current frame and we have another set of keypoints
from our target object in the previous frame. The next step is to extract the homography
matrix from these matching points. This homography matrix tells us how to transform the
overlaid rectangle so that it's aligned with the surface of the cardboard box. We just need to
take this homography matrix and apply it to the overlaid rectangle to obtain the new
positions of all the cardboard box's points.

How to augment our reality
Now that we know how to track planar objects, let's see how to overlay 3D objects on top of
the real world. The objects are 3D but the video on our screen is 2D. So, the first step here is
to understand how to map those 3D objects to 2D surfaces so that they look realistic. We
just need to project those 3D points onto planar surfaces.

Mapping coordinates from 3D to 2D
Once we estimate the pose, we project the points from 3D to 2D. Consider the following
image:



Augmented Reality Chapter 10

[ 211 ]

As we can see here, the TV remote control is a 3D object but we are seeing it on a 2D plane.
Now if we move it around, it will look like this:



Augmented Reality Chapter 10

[ 212 ]

This 3D object is still on a 2D plane. The object has moved to a different location and the
distance from the camera has changed as well. How do we compute these coordinates? We
need a mechanism to map this 3D object onto the 2D surface. This is where 3D-to-2D
projection becomes really important.

We just need to estimate the initial camera pose to start with. Now, let's assume that the
intrinsic parameters of the camera are already known. So, we can just use the 
function in OpenCV to estimate the camera's pose. This function is used to estimate the
object's pose using a set of points as seen in the following code. You can read more about it
at 

: 

Once we do this, we need to project these points onto a 2D plane. We use the OpenCV
 function to do this. This function calculates the projections of those 3D

points onto the 2D plane.

How to overlay 3D objects on a video
Now that we have all the different blocks, we are ready to build the final system. Let's say
we want to overlay a pyramid on top of our cardboard box, as shown here:



Augmented Reality Chapter 10

[ 213 ]

Let's tilt the cardboard box to see what happens:

Looks like the pyramid is following the surface. Let's add a second target:



Augmented Reality Chapter 10

[ 214 ]

You can keep adding more targets and all those pyramids will be tracked nicely. Let's see
how to do this using OpenCV Python. Make sure to save the previous file as

 because we will be importing a couple of classes from there:

toyo
ハイライト表示

toyo
ハイライト表示



Augmented Reality Chapter 10

[ 215 ]



Augmented Reality Chapter 10

[ 216 ]

Let's look at the code
The  class is used to perform all the computations here. We initialize the class with
the pyramid structure that is defined using edges and vertices. The logic that we use to
track the surface is the same as we discussed earlier because we are using the same class.
We just need to use  and  to map the 3D pyramid to the 2D
surface.

Let's add some movements
Now that we know how to add a virtual pyramid, let's see if we can add some movements.
Let's see how we can dynamically change the height of the pyramid. When you start, the
pyramid will look like this:



Augmented Reality Chapter 10

[ 217 ]

If you wait for some time, the pyramid gets taller and will look like this:

Let's see how to do it in OpenCV Python. Inside the augmented reality code that we just
discussed, add the following snippet at the end of the  method in the 
class:

Now that we have the structure, we need to add the code to dynamically change the height.
Replace the  method with the following method:



Augmented Reality Chapter 10

[ 218 ]



Augmented Reality Chapter 10

[ 219 ]

Now that we know how to change the height, let's go ahead and make the pyramid dance
for us. We can make the tip of the pyramid oscillate periodically. So when you start, it will
look like this:

If you wait for some time, it will look like this:



Augmented Reality Chapter 10

[ 220 ]

You can look at  for the implementation details.

In our next experiment, we will make the whole pyramid move around the region of
interest. We can make it move in any way we want. Let's start by adding linear diagonal
movement around our selected region of interest. When you start, it will look like this:

After some time, it will look like this:



Augmented Reality Chapter 10

[ 221 ]

Refer to  to see how to change the
 method to make it dance. Let's see if we can make the pyramid go

around in circles around our region of interest. When you start, it will look like this:

After some time, it will move to a new position:



Augmented Reality Chapter 10

[ 222 ]

You can refer to  to see how to make this
happen. You can make it do anything you want. You just need to come up with the right
mathematical formula and the pyramid will literally dance to your tune! You can also try
out other virtual objects to see what you can do with it. There are a lot of things you can do
with a lot of different objects. These examples provide good reference points, on top of
which you can build many interesting augmented reality applications.

Summary
In this chapter, you learned about the premise of augmented reality and gained an
understanding of what an augmented reality system looks like. We discussed the geometric
transformations required for augmented reality. You also learned how to use those
transformations to estimate the camera pose, and you learned how to track planar objects.
We discussed how we can add virtual objects on top of the real world. You learned how to
modify virtual objects in different ways to add cool effects. 

In the next chapter, we will learn how to apply machine learning techniques, along with
artificial neural networks, which will help us to enhance the knowledge already acquired in

, Object Recognition.



Detecting and Tracking Different Body Parts Chapter 4

[ 85 ]

Fun with eyes
Now that we know how to detect eyes in an image, let's see if we can do something fun
with it. We can do something like what is shown in the following screenshot:

Let's look at the code to see how to do something like this:

toyo
ハイライト表示



Detecting and Tracking Different Body Parts Chapter 4

[ 86 ]



Detecting and Tracking Different Body Parts Chapter 4

[ 87 ]

Positioning the sunglasses
Just like we did earlier, we load the image and detect the eyes. Once we detect the eyes, we
resize the sunglasses image to fit the current region of interest. To create the region of
interest, we consider the distance between the eyes. We resize the image accordingly and
then go ahead and create a mask. This is similar to what we did with the skull mask earlier.
The positioning of the sunglasses on the face is subjective, so you will have to tinker with
the weights if you want to use a different pair of sunglasses.

Detecting ears
Once more, through the use of Haar cascade classifier files, the code below will identify
each ear, highlighting them once they are detected. As you can notice, two different
classifiers are required as the coordinates for each ear will be inverted:



Detecting and Tracking Different Body Parts Chapter 4

[ 89 ]

Detecting a mouth
This time, using Haar classifiers, we are going to extract a mouth position from the input
video stream, and on the code below this code we are going to use those coordinates to
place a mustache on the face:



Detecting and Tracking Different Body Parts Chapter 4

[ 90 ]

The following image shows what the output looks like:

It's time for a moustache
Let's overlay a moustache on top:



Detecting and Tracking Different Body Parts Chapter 4

[ 91 ]

Here's what it looks like:



Detecting and Tracking Different Body Parts Chapter 4

[ 92 ]

Detecting pupils
We are going to take a different approach here. Pupils are too generic to take the Haar
cascade approach. We will also get a sense of how to detect things based on their shape. The
following is what the output will look like:

Let's see how to build the pupil detector:



Detecting and Tracking Different Body Parts Chapter 4

[ 93 ]

If you run this program, you will see the output as shown earlier.

Deconstructing the code
As we discussed earlier, we are not going to use Haar cascade to detect pupils. If we can't
use a pre-trained classifier, then how are we going to detect the pupils? Well, we can use
shape analysis to detect the pupils. We know that pupils are circular, so we can use this
information to detect them in the image. We invert the input image and then convert it into
a grayscale image as shown in the following line:



Detecting and Tracking Different Body Parts Chapter 4

[ 94 ]

As we can see here, we can invert an image using the tilde operator. Inverting the image is
helpful in our case because the pupil is black in color, and black corresponds to a low pixel
value. We then threshold the image to make sure that there are only black and white pixels.
Now, we have to find out the boundaries of all the shapes. OpenCV provides a nice
function to achieve this, that is . We will discuss more about this in the
upcoming chapters. But for now, all we need to know is that this function returns the set of
boundaries of all the shapes that are found in the image.

The next step is to identify the shape of the pupil and discard the rest. We will use certain
properties of the circle to zero-in on this shape. Let's consider the width to height ratio of
the bounding rectangle. If the shape is a circle, this ratio will be one. We can use
the  function to obtain the coordinates of the bounding rectangle. Let's
consider the area of this shape. If we roughly compute the radius of this shape and use the
formula for the area of the circle, then it should be close to the area of this contour. We can
use the  function to compute the area of any contour in the image. So, we can
use these conditions and filter out the shapes. After we do that, we are left with two pupils
in the image. We can refine it further by limiting the search region to the face or the eyes.
Since you know how to detect faces and eyes, you can give it a try and see if you can get it
working for a live video stream.

If you feel like playing with another kind of body detection, just go to the
following link to find the difference classifiers: ;

 

Summary
In this chapter, we discussed Haar cascades and integral images. We understood how the
face detection pipeline is built. We learned how to detect and track faces in a live video
stream. We discussed how to use the face detection pipeline to detect various body parts,
such as eyes, ears, nose, and mouth. We learned how to overlay masks on top on the input
image using the results of body parts detection. We used the principles of shape analysis to
detect the pupils.

In the next chapter, we are going to discuss feature detection and how it can be used to
understand image content.




