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Abstract

We discuss 3D shape reconstruction from multiple silhouettes for objects in
rigid motion. The 3D shape reconstruction from multiple silhouettes is called
Shape-from-Silhouette. It has been addressed by many research groups. The
Shape-from-Silhouette provides the basis of recent 3D shape reconstruction
methods. Recent proposed methods often reconstruct accurate shapes with
colors, textures or continuity of the objects, which is based on the recon-
structed shapes from silhouettes. Our proposed method in multiple frames
enables us to reconstruct accurate shapes only from silhouettes. Moreover,
it also provides massive images for the recent reconstruction methods.

A main contribution of our research is the elimination of assumptions on
colors and textures of the objects. We have realized the 3D shape recon-
struction without colors and textures of the objects. One of the advantages
of the Shape-from-Silhouette is the robustness for various environment and
objects. Our contribution is important to keep the advantage of the Shape-
from-Silhouette.

The visual hull is reconstructed as the intersection of the regions cal-
culated by silhouettes. It is guaranteed that the object is included in the
regions. With small number of cameras, the visual hull includes additional
regions, which do not represent the region of the object. Decreasing the
additional regions means that the reconstructed shapes become more accu-
rate. The additional regions decrease with increasing the number of cameras.
However, it is not realistic to install so many cameras around the object. The
number of cameras is limited by the conditions on physical size of cameras,
space for setting cameras, prices of cameras and so on. To exceed the limi-
tation, a shape reconstruction method that integrates silhouettes of multiple
frames has been proposed.

Let us suppose that the object is in a rigid motion. When the object
moves rigidly, cameras change their relative positions to the object at every
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moment. If the rigid motion of the object can be correctly estimated, images
obtained by the cameras at different moments are treated as the images in
different positions virtually. With these virtual images, an accurate visual
hull is reconstructed without increasing the number of physical cameras. In-
creasing the number of cameras also contributes the recent shape reconstruc-
tion methods with colors, textures or continuity of the object. The methods
based on the volume intersection method are expected to reconstruct more
accurate shapes by increasing number of cameras.

The shape reconstruction from silhouettes in multiple frames is composed
of two parts of techniques. One is silhouette extraction, and the other is sil-
houette integration. We propose a silhouette integration method which pre-
serves the robustness of the volume intersection method. In previous works,
there are problems both in silhouette extraction and silhouette integration.

The silhouette extraction for the shape reconstruction has not been dis-
cussed enough. To reconstruct shapes of various objects, the silhouettes
should be extracted for the various objects accurately enough. In our re-
search, we propose a silhouette extraction method from images obtained
from multiple cameras. Even for objects in unknown color, the method can
be adopted. The method is realized with our proposed random pattern back-
ground. The random pattern has many small regions with randomly-selected
colors. By using the random pattern backgrounds, we can keep the rate of
missing parts below a specified percentage. Moreover, for refining the silhou-
ettes, we detect and fill in the missing parts by integrating multiple images.
From the images captured by multiple cameras used to observe the object,
the object colors can be estimated. The missing parts can be detected by
comparing the object color with its corresponding background color. In our
experiments, we confirmed that this method effectively extracts silhouettes
and reconstructs 3D shapes.

Secondly, we have discussed object motion estimation for the silhouette
integration in multiple frames. In previous works, colors and textures of the
objects have been used for the motion estimation. They have not discussed
without colors and textures of the objects. We have proposed outcrop point,
which is 3D feature points extracted without colors and textures on surfaces
of the object. The problem for 3D feature point extraction is the fact that
reconstructed visual hulls might include the additional regions. The outcrop
points are guaranteed to be included not in the additional regions but in the
object region. This characteristic supports robust motion estimation, since
the outcrop points are continued to be extracted between different frames.



Moreover, we proposed an intelligent method of integrating incomplete
silhouettes and motion where outcrop points play an important role. In
the volume intersection method, shapes are reconstructed as an intersection
region of all possible regions calculated with silhouettes obtained from all
cameras. When object motion is estimated with large error, the integrated
shape will have many missing parts. Especially when silhouettes are ex-
tracted with many missing parts or additional parts, 3D feature points are
difficult to be extracted. When the estimated motion has large error, shapes
are reconstructed with missing parts. We cannot prevent silhouettes from be-
ing extracted with additional and missing regions in real environments. To
solve the missing problem, we have designed a function calculated with out-
crop points, visual hulls and estimated motion. The reconstructed shape are
preserved can be evaluated referring to how many outcrop points have been
included in the reconstructed shape of another frame. The outcrop points
tend to be extracted from outstanding parts on the object surface, and the
outstanding parts characterize what the object is. Preserving these points
in the integrated shapes gives us to reconstruct accurate shapes. Silhouettes
in multiple frames can be integrated with fewer missing parts based on this
evaluation.

In this paper, the silhouette extraction and the silhouette integration are
discussed. The accuracy of the silhouette extraction improves that of the sil-
houette integration. The accuracy of the silhouette integration also improves
that of the silhouette extraction. Accurate 3D shapes can be reconstructed
by considering both of the silhouette extraction and silhouette integration.
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Chapter 1

Introduction

We discuss 3D shape reconstruction from silhouettes in multiple frames. The
3D shape reconstruction from silhouettes is called Shape-from-Silhouette. 1t
has been addressed by many research groups. The Shape-from-Silhouette
provides the basis of many kinds of recent 3D shape reconstruction meth-
ods. Recent proposed methods reconstruct accurate shapes with colors of
the object with consistency between reconstructed shape and obtained im-
ages or continuity of the shapes, which is based on the reconstructed shapes
from silhouettes. Our proposed image integration method in multiple frames
enables us to reconstruct accurate shapes. Moreover, it also provides useful
information for the recent proposed methods.

In the Shape-from-Silhouettes in multiple frames, our main contribution
of this research is the elimination of assumptions on colors and textures of
target objects. We have realized 3D shape reconstruction without colors and
textures of the objects. One of the advantages of the Shape-from-Silhouette
is the robustness for various environment and objects. Our contribution is
important to keep the advantage of the Shape-from-Silhouette.

1.1 Shape from Silhouettes of Multiple Frames

With the volume intersection method [30], a shape of a 3D physical object
is reconstructed from silhouettes of obtained images. The volume intersec-
tion method is a representative method of Shape-from-Silhouette. In the
volume intersection method, the reconstructed shapes are called visual hulls,
or VHs. The volume intersection method is intrinsically a method of shape
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reconstruction only from obtained silhouettes. he method is one of the most
robust methods for 3D shape reconstruction. Silhouette extraction is not eas-
ily affected by changing optical environment. The shape reconstruction from
silhouettes is robust for color changing of object surfaces. Non-Lambertian
reflectance can be dealt by the shape reconstruction from silhouettes. Un-
like stereo vision and other 3D shape reconstruction methods, the volume
intersection method does not require the existence of texture on the surface
of the object, since the method can reconstruct 3D shapes only from silhou-
ettes; it is available even in adverse lighting environments. In recent works
[41, 47, 10, 14, 25, 43, 19, 48, 37] , visual hulls are refined by any infor-
mation other than the silhouettes. Together with the volume intersection
method, colors of the object, consistency between reconstructed shape and
obtained images or continuity of the shapes are used to reconstruct more ac-
curate shapes. The works have been built upon the robustness of the volume
intersection methods.

The visual hull is reconstructed as the intersection of the regions calcu-
lated by silhouettes. The regions have possibilities of existence of a part of
the object. With small number of cameras, the visual hull includes additional
regions, which do not represent parts of the object. The additional regions
decrease with increasing the number of cameras. Decreasing the additional
regions means that the reconstructed shapes become more accurate. How-
ever, it is not realistic to install so many cameras around the object. The
number of cameras is limited by the conditions on physical size of cameras,
space for setting cameras, prices of cameras and so on. To exceed the lim-
itation, a shape reconstruction method that integrates silhouettes obtained
in multiple frames have been proposed [4].

It has been proposed in many previous works on the volume intersection
method. They employed silhouettes of an object in motion in order to im-
prove accuracy in the reconstructed shape. In some of those works, the object
is observed by cameras while being rotated by turntables [49, 56] . Obtained
images of the object in rotation can be applied to the volume intersection
method. Changing relative positions between the cameras and the object is
described by the rotation parameter of a turntable. Although this approach
using the turntable is easy and effective for introducing motion of objects to
the volume intersection method, it is possible that motion of the object is
limited only to the rotation around the axis of the turntable.

Let us suppose that the object is in a rigid motion. When the object
moves rigidly, cameras change their relative positions to the object at every
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moment. If the rigid motion of the object can be correctly estimated, images
obtained by the cameras at different moments are treated as the images in
different positions virtually. With these virtual images, an accurate VH is
reconstructed without increasing the number of cameras. With these virtual
cameras, we can improve accuracy of the reconstructed 3D shape without
increasing the number of cameras. The increasing the number of cameras also
contributes the shape reconstruction with colors, consistency or continuity
in the images. The methods based on the volume intersection method are
expected to reconstruct more accurate shapes by the increasing the number
of cameras in multiple frames.

The shape reconstruction by silhouette integration in multiple frames is
composed of two parts of techniques. One is silhouette extraction, and the
other is silhouette integration. We have proposed the silhouette integration
in multiple frames, which preserves the robustness of the volume intersection
method. In previous works, there are problems not only in the silhouette
extraction but also in the silhouette integration. Our main contribution the
elimination of assumptions on colors and textures of target objects from the
methods of previous works.

We address both of the problems of the silhouette extraction and the sil-
houette integration as shown in Figure 1.1. First, we discuss the silhouette
extraction in Chapter 2. In Chapter 2, random pattern, which is special tex-
ture, is proposed for the silhouette extraction. The random pattern enables
us to extract silhouettes even for unknown color objects. In Chapter 3, we
propose feature points which can be extracted by textureless objects. We
call the feature points outcrop points. With the outcrop points, we realize to
estimate a motion of a textureless object. In Chapter 4, we propose a novel
silhouette integration method which does not adopt silhouettes of harmful
frames. In some frames, silhouettes are registrated with large errors of the
motion estimation. The silhouettes of such frames lead to missing parts in
the reconstructed shapes. Especially outstanding points on the object sur-
face tend to be missed easily. Since the outstanding points characterize the
shapes of the objects, missing outstanding points makes the reconstructed
shapes inferior. To avoid integrating the silhouettes of such frames, we real-
ize to reconstruct shapes with preserving the outstanding points and shape
characteristics. In Chapter 5, we conclude this paper. We also discuss the
relationship between the silhouette extraction and the silhouette integration
in the Chapter. We describe how the accuracy of the silhouette extraction
affect that of the silhouette integration, and conversely. Future works are
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discussed in Chapter 6.

( )
4 N )\
Chapter 3
Outcrop Point
Extraction
Chapter 2
Random Pattern
Backgrounds
Chapter 4
Frame Evaluation
\§ AN J
Silhouette extraction Silhouette integration
\_ J

Shape reconstruction by integration of silhouettes in multiple frames

Figure 1.1: The integration of silhouettes in multiple frames.

1.2 Silhouette Extraction with Random Pat-
tern Backgrounds

In Chapter 2, we present a novel approach for extracting silhouettes by using
a particular pattern that we call the random pattern.

The volume intersection method reconstructs the shapes of 3D objects
from their silhouettes obtained with multiple cameras. With the method,
if some parts of the silhouettes are missed, the corresponding parts of the
reconstructed shapes are also missed. When colors of the objects and the
backgrounds are similar, many parts of the silhouettes are missed. We adopt



1.3 Object Motion Estimation from Silhouettes of Multiple Frames )

random pattern backgrounds to extract correct silhouettes. The random
pattern has many small regions with randomly-selected colors. By using the
random pattern backgrounds, we can keep the rate of missing parts below
a specified percentage, even for objects of unknown color. To refine the
silhouettes, we detect and fill in the missing parts by integrating multiple
images. From the images captured by multiple cameras used to observe
the object, the object’s colors can be estimated. The missing parts can be
detected by comparing the object’s color with its corresponding background’s
color. In our experiments, we confirmed that this method effectively extracts
silhouettes and reconstructs 3D shapes.

1.3 Object Motion Estimation from Silhou-
ettes of Multiple Frames

We discuss 3D shape reconstruction of an object in a rigid motion with the
volume intersection method in Chapter 3. A reconstructed shape becomes
more accurate with an increase number of cameras in the volume intersec-
tion method. However, it is not realistic to install so many cameras around
the object due to physical limitation on their spatial configurations. When
the object is in a rigid motion, the cameras change their positions to the
object at every moment. If the rigid motion of the object can be correctly
estimated, cameras at different moments are treated as cameras in different
positions virtually. With these virtual cameras, we can improve accuracy of
the reconstructed 3D shape without increasing their number. Based on this
idea, we propose an accurate shape reconstruction method from images of
the object in motion. Our method reconstructs the 3D shape while estimat-
ing its motion with our new proposed feature points. The feature points are
guaranteed to be located on the real surface of the object. As the result, we
can acquire an accurate shape from images in multiple frames.

It has been proposed in many previous works on the volume intersection
method. They employed silhouettes of an object in motion in order to im-
prove accuracy in the reconstructed shape. Cheung et al. [4] have proposed
to extract feature points for estimating the rigid motion of the object from
images. However, this method employs color information to extract the fea-
ture points. It loses the advantage of the volume intersection method that
does not need color information of objects and can be applied even to objects
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without texture, compared with stereo vision approaches, as discussed above.

In other works, it is proposed to extract feature points of the object for
motion tracking. The feature points are located on the surface of visual
hulls. They are extracted based on the epipolar geometry [6, 9, 13, 10, 53]
. The feature points are called frontier points or epipolar tangencies. The
motion estimation with the feature point from visual hulls does not require
color features of the object. A disadvantage is that the feature points fails to
be extracted, which caused by the additional regions included in the visual
hulls. Since the visual hulls include the additional regions, extracting feature
points only from the object region is difficult. From the additional regions,
some feature points are extracted at a certain frame, although other some
feature points are extracted at a different time. The feature points extracted
in different frames are not guaranteed to be same.

To address the problem, we propose a new kind of feature points, which
called outcrop points. The outcrop points are also extracted from the visual
hulls. They are guaranteed to be included in the object region and not
included in the additional regions. Stable object motion estimation is realized
with the outcrop points.

1.4 Frame Evaluation for Silhouette Integra-
tion

In volume intersection method, 3D shapes are reconstructed from silhouettes
which obtained by multiple cameras. When more cameras are used, more
accurate shapes are reconstructed in the volume intersection method. Since
the number of cameras is limited, the accuracy of reconstructed shapes is
also limited. In recent works, silhouette integration methods [30, 23] have
been proposed for shape reconstruction.

A problem of these methods is that shapes with missing parts are pro-
duced from incomplete silhouettes. The incompleteness of silhouettes means
missing and over-extracted of silhouettes. It is known that the missing of re-
constructed shape causes the error of motion estimation. In previous works,
any solution has not proposed to solve the problem. To solve the problem
is important, because the incompleteness of silhouettes cannot be avoided in
real environment.

In Chapter 4, we discuss how the motion estimation is affected by the
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incompleteness of extracted silhouettes. Based on the discussion, we pro-
pose an integration method for incomplete silhouettes. In the method, out-
crop points, which are kinds of feature points for motion estimation, play
an important role. By referring outcrop points and reconstructed shapes,
estimated motion can be evaluated. Based on the evaluation, silhouettes in
multiple frames can be integrated with less missing parts.






Chapter 2

Silhouette Extraction with
Random Pattern Backgrounds

2.1 Introduction

In the volume intersection method [30], shapes of 3D objects are recon-
structed from the silhouettes of multiple images that are corresponding re-
gions of camera images of those objects. The shapes of the physical ob-
jects are often reconstructed with stereo vision approaches [8]. However,
these approaches cannot be applied to the objects without rich texture.
Laser rangefinders are also used for reconstructing shapes [27, 18]. However,
laser rangefinders cannot reconstruct the shapes of the objects that absorb
laser light. Unlike the approaches mentioned above, the volume intersection
method is not affected by colors or surface characteristics of objects because
the method reconstructs the shapes of the objects from their silhouettes only.

However, the volume intersection method has the problem that some
parts of reconstructed shapes are missed when the corresponding parts of
the silhouettes are missed. The missing parts of silhouettes take the form
of holes in the reconstructed shapes. For example, with the chroma key
systems, which often called blue screen matting systems, many parts of the
silhouettes extracted for blue objects are missed. To avoid missing parts of
the silhouettes, we need to employ backgrounds in a color different from the
colors of object.

In previous works, extracting the silhouettes without depending on ob-
jects’ colors by switching two backgrounds in different colors has been pro-
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posed [44, 31]. In these methods, two different single-color backgrounds are
used. At least one of the background colors should be different from each
color of the object. The union of the silhouettes obtained when using each
of the two backgrounds is guaranteed to have no missing parts. However, in
these methods, the object must remain fixed stable while the backgrounds
are switched. Another advantage of the volume intersection method is that
the method requires little observation time. This advantage is effective for
reconstructing moving objects, or to analyze shape transformation [17, 3, 32].
Reduced observation time makes it possible to reconstruct changing shapes
in multiple frames. However, due to the requirement that the object remain
fixed while the background is switched, the advantage of a short observation
time is lost.

In film production, the silhouettes are extracted with special devices.
Such silhouette extraction is often called as matting. In Z-keying method
[20], a camera set as a range sensor is required for each position. In defo-
cus matting [33], a large number of special camera sets are required. These
methods are difficult to be applied for the volume intersection method, be-
cause many cameras are used for reconstructing 3D shapes. There occurs
the problem of physical space and position calibration.

In this article, we propose a real-time silhouette extraction method even
for objects of unknown color. We employ random pattern backgrounds for
silhouette extraction. The random pattern backgrounds have many small
regions filled with randomly selected colors. With the random pattern back-
grounds, the object’s color and the background’s color are expected to be
different in most regions. As the result, the missing parts of silhouettes are
suppressed below a specified percentage.

When the silhouettes have only few missing parts, almost complete shape
of the object can be reconstructed. From the shape, we can estimate to
which pixels of the obtained images that each part of the object is projected.
The color of this part of the object can be estimated from the projected
pixels. When the colors of the part and the projected pixels are similar,
determining the pixels to be included in the silhouettes is difficult. Correct
silhouettes can be obtained by including a large percentage of the pixels
in the silhouettes. Using the random pattern backgrounds together with
the silhouette correcting method, shapes with fewer missing parts can be
obtained even for objects of unknown color.

In the reminder of this article, we first give a brief summary of the volume
intersection method, as well as the reason why parts of the reconstructed
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shapes are missing due to missing parts of the silhouettes in Section 2. In
Sections 3 and 4, we propose a method for obtaining accurate shapes of
objects of unknown color by using the random pattern backgrounds and a
silhouette refining method. Experimental results are presented in Section 5,
and future work is discussed in Section 6.

2.2 3D Shape reconstruction from Silhouettes
in Multiple Frames

In this Section, we explain the theories of the volume intersection method.

2.2.1 The Volume Intersection Method

The shape of an object is reconstructed from silhouettes obtained by multiple
cameras with the volume intersection method [30, 23]. The reconstructed
shape is called a Visual Hull, or VH.

The volume intersection method at time ¢ is realized as shown in Figure
2.1. Let us denote the cameras that are placed around target object O to
capture it by C;(j = 1,---,N), where N denotes the number of cameras
(N > 1). All the cameras observe the object synchronously. Time i can
be replaced as the i-frame. The 2D region that corresponds to object O is
extracted from the images of C;. The projection matrix of C; is represented
as P;. This region is called the silhouette and denoted by S;;. When the
object is in motion, observed silhouettes differ among frames. O is guaranteed
to be included in a cone with the apex at the optical center of C; and the

base at S;; is then calculated. This cone is called the visual cone of camera
C;, and denoted by

Vij ={v | Pjv € Sij}, (2.1)
where v represents the occupation of a small 3D region, or a voxel. Visual hull

V; of the i-frame is defined as the intersection of visual cones V;i,---, Vin.

V; = {U | Vj, PjU € Szy} (22)
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% Camera C;
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Visual Cone Vi \
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Figure 2.1: Volume intersection method.

In this paper, it is assumed that the visual hull is represented as a set
of voxels. Each voxel denotes occupancy of a unit region in the 3D space.
Whether the unit region is occupied or not is represented with binary values.
The visual hull V; describes the 3D shape reconstructed with the volume
intersection method with cameras C; (j = 1,---,N), but the visual hull
is not exactly an identical shape with that of the target object. Regions
corresponding to the target object are called object regions. Those regions of
the visual hull that are not included in the object regions are called additional
regions. The additional regions decrease with the increase number of cameras;
more accurate shapes can be obtained using more cameras.
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2.2.2 Integration of Visual Hulls in Multiple Frames

Although the increase number of cameras improves accuracy of the recon-
structed shape with the volume intersection method, it is not realistic to in-
stall so many cameras due to physical limitation on placing cameras around
the object. Instead of increasing cameras actually, we can virtually realize
the situation in which the number of cameras is increased by using images
of the object in motion. When the motion of the object is known, cameras
at different moments are treated as those at different positions.

As illustrated in Figure 2.2, suppose that a pair of cameras observe the
object. The visual hulls before and after the movement of the object is shown
in (a) and (b) of Figure 2.2. The images obtained by the pair of cameras
after the movement of the object serve those with another pair of cameras
at different positions before the movement. Those positions of the cameras
can be calculated if the motion of the object is known. By using images
obtained from the four different positions of the pair of cameras before and
after movement, we can improve accuracy of the reconstructed shape.

1-frame k-frame 1-frame

N
Camera |
Visual hull )
Integrated
Camera visual hull

(a) VH before movement (b) VH after movement (c) Integrated VH

"
A

.

o

Figure 2.2: Integration of images at different moment.

The silhouette integration in case of more than 2 cameras is discussed as
same as the case of 2 cameras. The silhouette integration of multiple cameras
is shown in Fig 2.3.
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Figure 2.3: Integration of images of multiple cameras in multiple frames.

Let the object moves rigidly and the motion be known. An intersection
of the visual hulls V;(i = 1,---, M) means the shape from silhouettes of all
frames. When k-th frame is the main frame, the intersection V* is calculated
by the estimated motion Dy, between k-frame and i-th frame (i = 1,--- , M)
by Eq. (2.3). The intersection V* is called an integrated shape.

2.2.3 Evaluation for Reconstructed Shapes

To evaluate the accuracy of reconstructed shapes, the numbers of the missing
regions and additional regions are available. The reconstructed visual hull
might not match to the object region completely as shown in 2.4. The inter-
section of these regions is common region. Additional region is defined as the
region which is included in the visual hull and not included in the common
region. Missing region is also defined as the region which is not included
in the visual hull and included in the common region. Since the visual hull
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Missing Common

region region

Region of object Region of visual hull

Figure 2.4: A missing region and additional region of a visual hull.

ideally matches to the object region, the additional region and missing region
should be decreased. Error region is defined as the sum of the additional and
missing regions. From the number of voxels included in the error region, we
will evaluate the reconstructed shapes.

2.3 Random Pattern Backgrounds

2.3.1 Silhouette Extraction for Objects of Unknown
Color

Generally, the silhouettes of an object are extracted based on the difference
in color between an object and its background. When the colors of the
object and its background are similar, silhouettes extracted would have many
missing parts. The missing parts of the silhouettes take the form of holes.
To decrease the amount of missing parts of the silhouettes, the background
colors should be different from those of the object. However, this condition
cannot be fulfilled by using a background in a single color when the color of
the object is unknown. Although, employing backgrounds of different colors
by switching those backgrounds depending on the colors of objects is possible
(31, 44], to prepare and change those backgrounds takes time and effort.
We adopt random pattern backgrounds to extract correct silhouettes. The
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random pattern have many small regions with randomly-selected colors, as
shown in Figure 2.5. The silhouettes extracted with the random pattern
backgrounds have missing parts below a specific percentage, even for objects
of unknown color.

Figure 2.5: Sample of random pattern.

Figure 2.6 illustrates the rate of missing parts of a silhouette for an object,
when the object has various colors and the silhouette is extracted under the
background in a specific color. In the figure, the horizontal axis denotes the
color of the object and the vertical axis the rate of missing silhouette parts
for that color. When the object has a color different from its background,
the silhouette for the object is correctly extracted as is shown by the solid
line (a) in Figure 2.6, i.e., the rate of missing parts is 0.

However, when the object has a color similar to the background, i.e.,
the difference between the colors is less than a threshold denoted by A; in
Figure 2.6, the rate of missing parts would be drastically high. With random
pattern backgrounds, the silhouettes have missing parts below a specific rate
Ay shown as the broken line (b) in Figure 2.6. The missing rate A, does not
depend on the object’s color.

For objects in multiple colors with single-colored backgrounds, multiple
peaks of the missing parts rate, which correspond to the object’s colors,
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Figure 2.6: Relation between object’s color and rate of missing silhouette
parts for each kind of background.

appear in the solid line (a). With the random pattern backgrounds, those
peaks of the missing parts rate do not appear, even for objects in multiple
colors.

Moreover, with the random pattern backgrounds, the object’s color and
the corresponding background’s color are expected to be different in most
images, which are provided from the small size of each region of the random
pattern. The object’s colors are easy to be estimated when the silhouettes
are correctly extracted in most images. It leads that the silhouettes are easy
to be refined with our method discussed in Section 2.4.

2.3.2 Expected Rate of Silhouette Missing Parts

For extracting silhouettes, many kinds of color spaces have been proposed.
In this article, values of Uand V of YUV color space are chosen for extracting
silhouettes, because we know that silhouette extraction in the U-V space is
not affected by shadows on the object or the backgrounds. The values of
R,G,B are calculated for those of Y,U,V as in the following equation.
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R 1000 0  1.402 Y
G | = | 1.000 -0.344 -0.714 U (2.4)
B 1.000 1772 0 \%

However, our proposed method can be applied to any color space.

Suppose the colors obtained by cameras are represented in the colors of
RGB in a color space. Each value of the color is represented in [0, 255]. In the
U-V space, the obtained colors form a hexagonal region as shown in Figure
2.7(a).

For the object’s color, shown as x in Figure 2.7(a), colors in a rectangular
region with the width of 2U,, and the height of 2V}, are treated as similar to
the object’s color, where Uy, and Vj;, denote the thresholds for the silhouette
extraction. We call this rectangular region the similar-color region. The
similar-color region occupies an area of 2U;, x 2V, at most. When the
object’s color is around the boundaries of the hexagon region, the similar-
color region becomes smaller than 2Uy, x 2Vjy,.

The color for each region of the random pattern is selected with the same
probability in the U-V space. A histogram of colors in a random pattern
is shown as Figure 2.7(b). If the background’s color is incidentally in the
similar-color region, the corresponding region of the silhouette is missed. The
largest silhouette missing rate p is calculated from the area of the rectangular
region as follows:

AU Vi,

<
p — S Y
where S denotes the area of the hexagonal region in the U-V space. By using
random pattern backgrounds, the rate of silhouette missing parts given is

guaranteed to be below p. For example, this value p is calculated to be less
than 5.21% when Uy, = 10, Vy;, = 10 as described by Eq. (2.5).

(2.5)

2.3.3 Generation of Random Patterns

In this subsection, we express a method for generating random patterns.

Selection of Color of Each region

The color for each region is selected with the same probability in the U-V
space, whereas the value of Y, which controls the brightness of an image, is
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(a) Similar-color region for the color denoted by x.

Vi 0.1%
Red 11275
) Magenta
Yelow/
—_— 0%
X 127.5
1275 U

Green

-127.5 |

Cyan

(b) Histogram of colors in random pattern.

Figure 2.7: When colors are given as values of RGB, which range from 0 to
255, U-V space is described as a hexagonal region. When a color is selected
as X, the similar-color region is described as a rectangular region in the U-V

space.
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not decided uniquely. If the value of Y is not adequately decided, observed
colors are biased in the U-V space. Thus, some regions appear visually as
white or black regions, depending on lighting conditions. To address the
problem, we set a target value Y; to fit the lighting conditions. Note that
the target value Y; does not depend on the objects’ colors. The value of Y
of each region is calculated from given values of U, V' and target value Y;.

Suppose the colors obtained by cameras are represented in RGB color
space. Each value of the color is represented in [0,255]. In the YUV space,
colors exist within the interior and boundary of a hexahedron as shown in
Figure 2.8. The boundaries of the hexahedron are defined by R =0, G = 0,
B =0, R =255, G =255 and B = 255.

Green

Magenta

Figure 2.8: Selection of color for each region.

The color of each region is selected with the following procedure.

1. Select a pair of values of U,V at random in [—127.5,127.5].
For the target value Y;, judge whether the color of (Y}, Us, V) is in
the interior of the hexahedron as shown in Fig 2.8. If the color is in
the interior, we adopt the color. If not, go to 3.
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3. Search for an intersecting point Y; between the line (U, V') = (U, Vj)
and the boundaries of the hexahedron. If there are one or more
points, select the nearest Y; from Y;, and the color (Y, Us, V) is
adopted. If no intersection point is found, go to 1 and select a new
pair of Uy, V.

In Step 2, the intersection points is calculated by the following equations
denoted by Eq. (2.4) and 0 < R, G, B < 255.

Y, = —1.402V, (2.6)
Y, = 0.344U, + 0.714V, (2.7)
Y, = —1.772U, (2.8)
Y, = 255—1.402V, (2.9)
Y, = 255+ 0.344U, + 0.714V, (2.10)
Y, = 255— 1.772U, (2.11)

Selection of Size of Each region

To ensure a randomness of colors of the pattern, each region of the pattern
needs to be set small enough. However, when the size is set below a certain
level, edge blurring would be a problem [34]. In regions with edge blurring,
colors among adjacent colors are observed. Therefore, observed colors are
biased in the U-V space.

To set the size of each region, we made many sizes of random pattern
backgrounds and set them in our experimental environment. The best size,
which best kept the randomness of colors, was selected. The size depends
on experimental environments, do not on objects. This means that the size
needs not to be changed by objects.

2.4 Recovering Missing Parts of Silhouettes

Let us focus on a part of the object. With the random pattern backgrounds,
most parts of the backgrounds for the corresponding part of the object are
expected to have different colors in each image as shown in Figure 2.9. This
means that the silhouettes of the object can be extracted correctly in the
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Figure 2.9: Object color estimation.

images from most of cameras. From the colors of the regions of those silhou-
ettes, the color of each part of the object can be estimated. By comparing an
estimated color with the background color captured by each camera, we can
detect and refine the missing parts of the silhouette as described in detail.

The silhouettes are extracted using conventional background subtraction
with the thresholds Uy, and V;,. We call the VH, which is reconstructed from
the original silhouettes, the original VH. Let us denote one of the neighboring
voxels of the original VH by a. The color of the voxel a can be obtained
from the images of multiple cameras observing a. Let Cy;s(a) denote the set
of cameras observing a, and let Ny;(a) denote the number of cameras in
Cuis(a). We denote the set of the cameras in C,;5(a) for which a is projected
into the inside or the border of the silhouettes by C;,(a). The set of the
cameras that are not included in C;,(a) is denoted by C,yi(a). The color of
voxel a can be estimated from the images in C;,(a) as shown in Figure 2.9.
We denote U and V values of a pixel to which a is projected for the image
of camera C; by f; v(¢i(a)) and f; v (¢;(a)). For the background in the image



2.5 Experimental Results 23

C;, we denote U and V values of a pixel to which « is projected by b; y(¢;(a))
and b; v (gi(a)). The estimated U and V values of a, which are denoted by
Avey(a) and Avey(a), are calculated as follows :

Avey () Zcieci;\(fzz:;;l)f(%(a)) (2.12)
Avey (a) = Zcieci;\(fzisfzi;t‘)/(%(a)). (2.13)

When the differences between Avey (a) and Avey (a) with bg (g (a)) and
bi.v (g (a)) for the image of C, € C,yi(a) are not substantially large, the pixel
qx(a) is regarded to be missed and added to the silhouette of Cj, because
the object region cannot be discriminated from the background with the
conventional background subtraction under this condition.

| Avey(a) — beu(ge(a)) |< U,

| AU@\/(CL) — bk,v(qk(a)) |< Vin (214)

This procedure is at first applied to the voxels neighboring the voxels of
the original VH. The original VH is refined by reconstructing VH from the
silhouettes obtained in the step above. The C;,(a), Cout(a) and Cyis(a) are
also recalculated in this step. The procedure is repeated by choosing a voxel
from the refined VH until no pixel is added to the silhouettes in the previous
procedure.

2.5 Experimental Results

In our experiment, the shape of a bumpy triceratops toy and a horse toy were
reconstructed with the volume intersection method. We used 19 cameras
surrounding them as shown in Figure 2.10 [17]. Positions and colors of all
cameras were calibrated in advance. Each region of the random pattern
backgrounds was printed in the color randomly chosen from the U-V space.
The random pattern backgrounds were secured to plastic boards. Both Uy,
and Vj;, for the silhouette extraction were set to 10 in this experiment. To
evaluate the silhouettes, we used silhouettes that were extracted manually as
correct silhouettes.
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Figure 2.10: 47 measurement system[17].
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2.5.1 Silhouette Refining

As described in Section 3, the rate of missing silhouette parts is below a
specific percentage due to use of the random pattern backgrounds. In this
subsection, we confirmed that the rate of the missing parts indicated as
described in Section 2.3. A triceratops toy and a horse toy are selected as
the objects. A sample image from a camera is shown as Figure 2.11(a).
The silhouette extracted under the random pattern backgrounds is shown as
white regions in Figure 2.11(b). When the silhouettes are extracted from the
obtained images in YUV color space, the regions which are filled with white
are given as the silhouettes as described in Figure 2.11(c) and Figure 2.12(c).
We can observe small holes only in the silhouettes. With the random pattern
backgrounds, even though some parts of silhouettes are missed, most parts of
the silhouettes are correctly extracted. The missing parts are below a certain
rate.

Although a few small regions are missing in the silhouette, no large miss-
ing part is found. This means that parts of the silhouette were actually
missed, however, the missing rate was suppressed to below a small amount
by using the random pattern backgrounds. Unlike the blue screen matting,
the missing rate does not depend on colors of objects.

With manually extracted silhouettes as answer silhouettes, the extracted
silhouettes with the random pattern backgrounds are evaluated. On average,
3.55% of the whole silhouettes was missed (14.11% at a maximum, 0.87% at a
minimum) for the triceratops, and 4.88% of the whole silhouettes was missed
(12.57% at a maximum, 2.23% at a minimum) for a horse in Figure 2.15(a).

From Eq. (2.5), the rate is expected to be less than 5.21%. The exper-
imental rates were less than the calculated rate on average, but were more
than the calculated rate at the maximum. This was caused by biased color
observation in a real environment.

The silhouettes with missing parts recovered with our method are shown
in Figure 2.11(c). In this result, the rates of missing parts were reduced to
0.89% of the whole silhouette on average (1.81% at a maximum, 0.09% at a
minimum) for the triceratops, and 2.33% of the whole silhouette on average
(4.33% at a maximum, 0.97% at a minimum) for the horse. Notably, the
maximum rates were markedly decreased.

The histograms in UV space are calculated by the obtained colors from
random pattern images in a computer, as shown in Figure 2.13(a). They also
calculated by the obtained colors from the random pattern backgrounds in
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(¢) Silhouette without refining  (d) Silhouette with refining

Figure 2.11: An example of silhouette refining with random pattern back-
grounds. (Triceratops)
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(b)

(a)

Target object Obtained image

(¢) Silhouette without refining  (d) Silhouette with refining

Figure 2.12: An example of silhouette refining with random pattern back-
grounds. (Horse)
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real environment, as shown in Figure 2.13(b). Whereas, the histograms from
regions of the triceratops and horse are given as shown in Figure 2.13(c) and
Figure 2.13(d). The rate of each point is represented with thickness of each

pixel.
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(d) Histogram of regions of Horse.

Figure 2.13: Histograms of random pattern images and target objects.

The histogram for random pattern images in a computer is uniformly

distributed as shown in Figure 2.13(a).

The pattern is an ideal pattern

which guarantees to extract silhouettes below a certain rate for all color
objects. The histogram shown in Figure 2.13(b) is distributed to the center.
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It is considered that lighting environment makes the distribution of observed
colors by inappropriate settings of a printer or cameras. The observed colors,
however, cover the similar color region as shown in Figure 2.13(b). Then, the
random pattern background is expected to satisfy the requirement described
in Section 2.3. The background should guarantee the certain rate of the
missing parts. Although the selected objects have similar colors with those of
observed random pattern backgrounds, the missing rate is below the expected
rate even for the objects. It means that the requirement which the rate of the
missing parts is below the expected rate will be satisfied, even if the observed
random pattern backgrounds have sort of color distribution.

2.5.2 Shape after Refining

The correct shapes reconstructed from a set of the correct silhouettes, which
were extracted manually, are shown in Figure 2.14(a). Compared with the
VHs reconstructed from the original silhouettes (Figure 2.14(b) and each
figure of (c) and (e) in 2.15, 2.16, 2.17 and 2.18, the VHs recovered with our
proposed method (Figures 2.14(c) and each right figure of (d) and (f)) have
fewer missing parts. The original VH of the triceratops (Figure 2.14(b)) has
large parts missing from the back and the tail. The missing parts of the
VHs are formed from the missing parts of the silhouettes accumulated in
the resultant VHs in the process of calculating the intersection of the visual
cones associated with the silhouettes. The missing parts form large holes in
the VHs. The holes of the reconstructed VHs are filled using our proposed
method.

Tables 2.1 and 2.2 explain the comparison of the original VH and the VH
refined with our proposed method. As shown in these tables, the numbers
of missing voxels were drastically decreased. Although the number of voxels
were increased, the sum of the missing voxels and the additional voxels, or
“error voxels”, were decreased as a whole.

2.6 Discussion and Conclusions

We proposed a method of using the volume intersection method to recon-
struct correct shapes even for objects of unknown color by using random
pattern backgrounds. Using random pattern backgrounds keeps the amount
of missing parts of the silhouettes below a specific percentage, even for ob-
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_, <
(c) Refined VH with out proposed method.

Figure 2.14: VH of a triceratops toy with recovering for silhouette missing
parts. Even if reconstructed shapes are applied to smoothing and coloring
processes, missing parts of shapes cannot be recovered in appearance. (Left)
Each shape drawn with surface patches obtained by marching cube algo-
rithm [28] for the resultant VH. (Center) Shapes of the left ones with surface
smoothing. (Right) Colored Shapes of the center ones with a Naive algorithm
which is a viewpoint independent patch-based method[5].
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(b) Elephant

(e) Elephant (f) Elephant

Figure 2.15: Colored Shapes of several toys. (Horse and elephant. )
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(c) Chick

(e) Hippopotamus (f) Hippopotamus

Figure 2.16: Colored Shapes of several toys. (Chick and hippopotamus. )
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(b) Mammoth

(e) Mammoth (f) Mammoth

Figure 2.17: Colored Shapes of several toys. (Husky and mammoth. )
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(e) Dog (f) Dog

Figure 2.18: Colored Shapes of several toys. (Hen and dog. )
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Table 2.1: Error voxels when using our proposed method. (Triceratops)

Additional voxels

Missing voxels

Error voxels

Original VH 8297 153300 161597
(3.1%) (57.5%) (60.6%)

Refined VH 30068 7252 37320
(11.3%) (2.7%) (14.0%)

Table 2.2: Error voxels when using our proposed method. (Horse)

Additional voxels

Missing voxels

Error voxels

Original VH 5720 153129 158849
(2.5%) (67.2%) (69.8%)
Refined VI 25297 18051 13348
(11.1%) (7.9%) (19.0%)

jects of unknown color. Correct silhouettes are obtained by adding the miss-
ing parts detected from the inconsistency of pixel colors from the random
pattern backgrounds. By using the random pattern backgrounds and the
missing parts of a silhouette missing recovered as described above, a shape
with fewer missing parts can be obtained. In our experiment, we confirmed
that a correct silhouette can be obtained by comparing shape reconstructed
using the proposed method and the shapes of silhouettes manually extracted.

As feature work, we plan to adjust the size of each region of the random
pattern backgrounds so that the region is sufficiently small for a random-
ness of background colors that does not cause edge blurring by setting the
positions of the cameras and the objects, as well as camera parameters, ap-
propriately.
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Chapter 3

Outcrop Points for Motion
Estimation

3.1 Introduction

In the volume intersection method, the 3D shape of the object is recon-
structed from obtained silhouettes. Compared with approaches based on
stereo vision or laser range finders, the method needs neither preprocess for
extracting detailed image features nor laser light source. It can be employed
even for reconstructing shapes of objects that have no texture or absorb laser
light. This advantage of the method makes itself applicable to shape recon-
struction for natural history, archeology objects, etc. In the volume inter-
section method, additional regions in the reconstructed shape decrease with
an increase number of cameras. More accurate shape is obtained with more
number of cameras. However, it is not realistic to install so many cameras
around the object due to physical limitation on their spatial configurations.
In this Chapter and next Chapter, we discuss reconstructing accurate shapes
from silhouettes obtained from small number of cameras.

We assume that the object is in a rigid motion. When the object is
in a rigid motion, the cameras change their positions to the object at every
moment. If the rigid motion of the object can be correctly estimated, cameras
at different time are treated as cameras in different positions virtually. With
these virtual cameras, we can improve accuracy of the reconstructed 3D shape
without increasing the number of cameras.

It has been proposed in many previous works on the volume intersection
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method to improve accuracy in the reconstructed shape. In some of those
works, the object is observed by cameras while being rotated by turntables
[49, 56] . The cameras observing a rotated object can be treated as many
cameras observing a stable object. The relative position between each camera
and the object is calculated from the rotation of the object. Although this
approach using the turntable is easy and effective for introducing motion
of objects to the volume intersection method, it is possible that motion of
the object is limited only to the rotation around the axis of the turntable.
Moreover, the turntable needs to be observed together in images. It means
that the images of cameras which are occluded by the turntable are not
utilized. In the volume intersection method, many images of many viewpoints
are required for accurate shape reconstruction.

Cheung et al. [4] have proposed to extract new feature points for tracking
the moving object from images. The relative positions between the object
and cameras are changing in multiple frames. If the rigid motion is estimated,
images from other positions are virtually obtained. The feature point extrac-
tion method by Cheung et al. employs color information of the object. It
loses the advantage of the volume intersection method that does not need
color information of objects and can be applied even to objects without tex-
ture, as discussed above.

In other works, it is also proposed to extract feature points from the vi-
sual hulls based on the epipolar geometry [6, 9, 13, 10, 53] . These feature
points are called frontier points, or epipolar tangencies because they are de-
rived from epipolar constraints. It is efficient to extract some feature points
for estimating the object motion. However, these feature points are not
guaranteed to be included in the object region completely. When the object
shape is complicated, the feature points tend to be included in the additional
region. It is difficult to extract feature points only from the object region,
not from the additional region. The visual hulls in multiple frames have the
additional regions which changes their shapes. The point on the surface of
the visual hull at a frame might be occluded in the additional region at the
other frames.

To address the problem, we propose a method to extract feature points
by projecting surface voxels of the visual hull to the silhouettes. With the
method, we can detect the voxels which are guaranteed to be included in the
object region. The extracted voxels are called outcrop points.

In this Chapter, we propose a new kind of feature points called outcrop
points, The outcrop points are useful for the object motion estimation from
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the visual hulls in multiple frames. The outcrop points are extracted based
on the silhouettes without colors.

In the remainder of this Chapter, we will propose a method for object
motion estimation with the outcrop points. In Section 3.2, we give a brief
summary of the accuracy limit of reconstructed shapes by integrating visual
hulls in multiple frames. In Sections 3.3 and Section 3.4, we propose the
procedure for extracting the outcrop points from visual hulls and that for es-
timating rigid motions of objects based on the outcrop points. Experimental
results are given in Section 3.5, and we conclude this Chapter in Section 3.6.

3.2 Reconstruction of Accurate Shapes

Silhouettes are extracted from sampling images. The silhouette sampling
restricts the accuracy of reconstructed shapes with the volume intersection
method. The reconstructed shapes are also affected by the sampling. This
restriction gives a difficulty for our method, which is the volume intersection
method in multiple frames. We discuss the sampling effect for setting a
requirement value. Niem et al. [36] have discussed the sampling effect for
reconstructed shapes. The sampling error was theoretically estimated in
their discussion. The estimated error is not practical, since they estimated
the error as a theoretical maximum. In this Section, we discuss the practical
sampling error of the reconstructed shapes with several simulation data.

Every voxel in an observation region is projected to the plane of projection
of each camera. The projection image of the voxel has a width in the plane.
Let ¢ at the maximum of the width for all voxels in the observation region.
q is given by settings, positions and resolutions of cameras. The size of
voxels also affects ¢. When ¢ is set to a large value, the sampling error
for the visual hulls becomes small. Here, we discuss the accuracy limit of
reconstructed shapes. The limit is defined by the sampling error.

The color value of a pixel determines whether the pixel is included in the
silhouette region. The color value is defined by the color value of the sampling
point of the pixel. Both of the regions in the silhouettes and out of the
silhouettes can be included in a pixel. The pixel includes parts of continuous-
valued contours of the silhouettes. Consider such pixel. We discuss the
distance between the sampling point and the contours of the silhouettes. Let
k be the maximum width of a pixel in images. The shape error on the surface
is k/q at a maximum. A contour of the silhouette is included in the pixel as
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shown in Figure 3.2.

Outside of silhouette

Sampling
pitch

Inside error Inside of silhouette

Figure 3.1: Error on surface of visual hull by sampling.

In the pixel of the image, a point out of the silhouette can be located /2
pixels in distance from the contour. In a voxel of the observation region, a
point out of the shape can be located v/2/q in distance from the surface of
the shape. Then, the sampling error in images is v/2 near the contour of the
silhouettes. The sampling error in the observation region is v/2/q near the
surface of the shapes. The sampling errors provide the accuracy limit of the
shape reconstruction.

Practically, the sampling errors are not so much. Assume that the silhou-
ettes are defined by the values of pixels. When more than a half of a pixel is
the silhouette region, the color value would be the object color, and the pixel
would be included in the silhouette. When more than a half of a pixel is out
of the silhouette region, the color value would be the background color, and
the pixel would not be included in the silhouette. In this case, the sampling
error in images is v/2/2 at a maximum. For a sphere as the target object,
the error region on the surface of the sphere is estimated to a of the whole
region as follows:

% 47?3k

- )
%7‘(’7‘3 qr

o =

(3.1)
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where 7 is the radius of the sphere, and r satisfies r > k/q.

From eq. 3.1, when 7 = 50, ¢ = 0.75 and k = v/2/2, the sampling error
on the sphere surface « is calculated to 5.67%. For the objects other than
spheres, the surface area of the objects is larger than that of the sphere. « of
the objects becomes larger than that of the sphere, which is represented by
eq. 3.1. Let N, be the number of voxels included in the object region, N, is
same to the number of voxels of the sphere which radius is (%)%. The rate

_1
of the error voxels on the surface is more than o = 2£ (222)73 For some

simulation objects, the numbers of cameras with which rggonstruct shapes
with the accuracy limit are estimated based on the rate a. New cameras
are located at a random position on the surface on a unit sphere. With
increasing the number of cameras, we examine the transition of the number
of the additional voxels. Target objects are a sphere, a cube, a torus and
a triceratops used in Section 3.5. ¢, N, and « of each object are shown in
table 3.1. The transition of the number of the additional voxels is drawn in
Figure 3.2. The longitudinal axis is represented by coefficients of a.

For the sphere, the rate of the additional voxels to the voxels of the visual
hull is less than «, when images are obtained by 49 cameras. For the objects
other than the sphere, the rates are less than «, when more than 49 cameras
are used. For the objects with outstanding points, more cameras are required
to decrease the rate.

Table 3.1: Parameters of target objects.

q N, « Num. of cameras

Sphere 1.679 | 1265791 | 1.88% 49
Cube 1.679 | 2424294 | 1.52% 406
Torus 1.679 | 268545 | 3.16% 103
Triceratops | 1.679 | 438310 | 2.68% 242

The error voxels represented by a are caused by the sampling error. The
error voxels would not be refined by integrating silhouettes in multiple frames.
We set the accuracy limit of shapes from the limit of the sampling error. The
accuracy limit is the goal for shapes reconstructed by integrating silhouettes
in multiple frames, If the summation of the additional and missing voxels is
below «, the reconstructed shapes reach to the goal.
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Figure 3.2: Relation between camera number and additional regions.

3.3 Extracting Feature Points

3.3.1 Required Conditions for Feature Points

In order to estimate the motion of the target object, we extract some feature
points from the visual hull at each frame. The following conditions need to
be satisfied by the feature points:

(1) Feature points are included in the visual hull at each moment.

(2) Feature points continue to be tracked from the object in motion.

Whereas the object region is included in the visual hull for all the frames,
the additional regions included in the visual hull changes with the motion of
the object. It depends on the relative position between the object and the
cameras. From this fact, any voxel in the additional regions of the visual hull
does not satisfy condition (1). Such voxel in the additional regions might not
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be included in visual hulls in some frames. In order to satisfy condition (1),
the feature points have to be included in the object region of the visual hull.

However, it is not easy to extract the voxels that are guaranteed to be
in the object region from the visual hull. Only visual hull and silhouettes
are given to extract such feature points. We cannot detect where the object
region of visual hull is, since the additional regions around the object region
in the visual hull changes at every frame. Any voxel of the object region
could be occluded from the additional regions of the visual hull.

The condition (2) is also difficult to be satisfied. To satisfy the condition
(2), same voxels in two different frames have to be extracted from visual
hulls in the two frames. The color feature is useful for identifying each point
on the surface of the object. If we can identity each point on the surface at
every frame, it is easy to extract same points at different frames. However,
we do not assume that the object has sufficient color feature as discussed in
Chapter 1.

We will propose a method to extract the voxels called outcrop points. The
outcrop points are guaranteed to be in the object region in the visual hull.
It satisfies the condition (1). They are extracted only from the silhouettes
and the visual hull.

Since the outcrop points do not satisfy condition (2) completely, we fur-
ther narrow them down available voxels for object motion estimation. It
is realized to apply to robust estimation approaches. This process will be
described in Section 3.4.

3.3.2 Frontier Points

In the previous work, there are some proposals for extracting feature points
from silhouettes. These feature points are called frontier points or epipolar
tangencies [6, 9, 13, 10, 53]. In this subsection, we discuss the problem of
these feature points.

When an object is observed by a pair of cameras, a plane is composed
of a 3D point on the surface and the optical centers of the pair of cameras.
The plane is called epipolar plane. Based on this epipolar geometry, the
point included in the object region has been considered to be extracted.
As illustrated in Figure 3.3, when a epipolar plane tangents to points on the
surface, the points are considered to be included in the object region of visual
hull. The points are defined the frontier points.

The frontier point seems to satisfy the condition (1). However, the frontier
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Figure 3.3: Frontier point extraction.

point is not guaranteed to be included in the object region of the visual hull.
If an epipolar plane tangents to more than one point on the surface of the
object, some false frontier points might be extracted, as shown in Figure
3.4. In the Figure, the point represented by an open circle is extracted as a
frontier point, unless the point is not included in visual hull. The point is
regarded as the frontier point in spite that it is not actually included in the
object region.

This problem occurs when an epipolar plane has more than one tangent
point on the object region, When the object has a complicated surface, the
problem often happens. Due to the problem, the frontier points cannot be
used for the feature points satisfying the condition (1). In the next sub-
section, we propose a method to extract the new feature points that are
guaranteed to satisfy the condition (1).

3.3.3 Outcrop Points

When voxel v in the visual hull satisfies the following conditions as illustrated
in Figure 3.5, we call v outcrop point.

1. When v is projected onto an image plane of each camera, the projected
pixel of v is in contour of the silhouette for at least one camera.

2. For each camera satisfying the condition above, any other voxel of
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© Frontier points

Figure 3.4: Missing points of frontier points.

visual hull is not projected to the pixel.

In Figure 3.5, contour; is a set of pixels on the contour of the silhouette for
camera C}, and V' is the visual hull reconstructed with the silhouettes of all
the cameras.

In principle, the outcrop points are guaranteed to be included in the
object region. If the outcrop point v satisfies the condition 1 in spite that v
is not actually included in the object region, any other voxels are required
to be projected to the pixel to which v is projected. Due to the condition 2,
any other voxels are not projected to the pixel. A pixel to which no voxels
are projected is not a element of the silhouette. If any other voxels are not
projected to the pixel, v is a voxel included in the object region.

Outstanding points on the surface of the object tend to be extracted as the
outcrop points as shown in Figure 3.6, since the contour of the silhouette for
each camera is used to extract the outcrop points. The outstanding points
tend to be projected to the contour pixels, even when a relative position
between the object and cameras changes.

When the motion of the object is not so large, the same set of outcrop
points tends to be extracted during the motion. This tendency is appropriate
for satistying the condition (2) for the feature points. However, all outcrop
points are not on the outstanding parts of the surface of object. Some out-
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Figure 3.5: Project voxels to a silhouette.

crop points on a smooth part does not continue to be extracted during the
motion. In order to cope with this problem, we introduce a robust estimation
method. In the robust motion estimation, the outcrop points which have no
corresponding points during the motion are not considered for estimating the
motion. The detailed procedure will be given in the next Section.

3.3.4 Outcrop Point Extraction and Sampling Grids in
2D Images and 3D Space

When sampling grids in 2D images and 3D space are not appropriately set,
outcrop points may not be extracted. Let us denote the 2D sampling grid by
dop and the 3D sampling grid by dsp. dsp is defined by the size of images
and the number of pixels in the images. dsp is defined by a system designer.
dsp and dsp are independent to each other.

If dyp > dszp, there are fewer pixels to which only one voxel is projected.
This means that there are less extracted outcrop points. Whereas, if dop <
dsp, almost every pixel in an image has one voxel that is projected to the
pixel. This means that most of voxels on the object surface are extracted
as outcrop points. However, not so many voxels are located on the object
surface when dsp is large.
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Figure 3.6: Changing extracted points by related position change between
the object and a camera.

The object motion is correctly estimated with many outcrop points. A
smaller space sampling grid serves more accurate motion estimation, because
the minimum error of the motion estimation is determined with the space
sampling grid. To estimate the object motion correctly, the space sampling
grid should be set small under the condition that outcrop points can be
extracted.

The outcrop points are extracted as shown in Figure 3.7. The object with
an outstanding part shown in 3.7(a) is observed with cameras. The space
sampling points included in the object are projected to the image planes of
multiple cameras. With the condition that the outcrop points are extracted,
the space sampling grids which are projected to the pixels on silhouette
contours and the corresponding pixel have only one projected space sampling
point are extracted as the outcrop points.

In Figure 3.7(b), we consider [, and [, for a space sampling point which
is possible to be extracted as an outcrop point. [, is the length along the di-
rection of translation. [, is calculated based on the distance for the neighbor
space sampling points. When there are a few the neighbor sampling grids
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Figure 3.7: Projection of 3D sampling points to an 2D image plane.
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included in the object, [, becomes large. When the direction of the trans-
lation and the ray of the camera are at right angles to each other and the
direction of the translation and the space sampling grid are same, [, is dsp
as a maximum value. dsp is the length of the space sampling grid. Let us
denote [, as O[3Dd3D, which 0 < aszp < 1.

I, is also the length along the direction of the translation. [, is calculated
based on the distance for the neighbor image sampling points. Consider that
Z > 0 denotes the distance between the center of the camera and the focused
space sampling grid, focal length of the camera is f and the image sampling
grid of the camera dap. 1, is dop - Z/f at a minimum when the direction of
the translation and the ray of the camera are at right angles to each other.
Let us denote [, as agpdsp, which 0 < asp < 1.

l, and [, determine the rate that the focused space sampling point is
extracted as an outcrop points as shown in Figure 3.7(b).

Outcrop point?
A

Yes | i ! ! '

No :

>
>

max(lp'lV,O) 1 Translation

v

Figure 3.8: The rate that a voxel is extracted as an outcrop point.

The rate that the focused space sampling point is extracted as an outcrop
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point is ,/(l, + maz(l, — 1,,0)). The value of {,/(l, + max(l, —,,0)) is 1
at a maximum in case that aspdsop - Z/f < aspdsp is satisfied. While, the
minimum value is 40 in case that dsp = +0. When dsp is small, outcrop
points are not extracted at all.

If the object is rotated, the value of [, is changed. [, is not changed with
the rotation of the object. {,/(l, +max(l,—1,,0)) is rotated with the rotation
of the object. It means that the rate that the focused space sampling point
is extracted as an outcrop point is changed. The rate is changed under the
condition that asp > 1 and 0 < azp < 1.

When projected space sampling grid matches the image sampling grid,
aopdop-Z] f < aspdsp is satisfied. For 3D shape reconstruction, such value is
often adopted as the space sampling grid. Considering ¢ discussed in Section
3.2, the space sampling grid which gives ¢ = /3 is the best configuration
for 3D shape reconstruction. In a special case that the direction of the
translation and the ray of the camera are at right angles to each other and
the direction of the translation and the space sampling grid are same, copdsp-
Z/f S O[3Dd3D is satisfied with d3D = d2D . Z/f

To estimate the object motion correctly, the space sampling grid should
be set small under the condition that some outcrop points can be extracted.
Once the object motion is estimated, the space sampling grid can be changed
for reconstructing shapes in multiple frames. The space sampling grid for
shape reconstruction is not required to be the same with that for motion
estimation. When we estimate the object motion, we should set the optimal
space sampling grid. Note that subsampling motion might be estimated when
the motion is estimated with many outcrop points. In discussions on super-
resolution [39], it is said that the motion can be estimated in subsampling
precision.

When dsp is set to dop - Z/f or such value, some outcrop points that
are required for motion estimation are adequately extracted. The outcrop
points tend to be extracted from outstanding parts on the object surface. The
optimal configuration is such that projected space sampling grid matches the
image sampling grid as described above.
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3.4 Object Motion Estimation

3.4.1 Transformation Matrix of Rigid Motion

We represent the rigid object motion between ¢-frame and k-frame by trans-
form matrix D which is a matrix of the homogeneous coordinates system.
This matrix is represented with a 3 x 3 rotational matrix denoted by R* and
a 1 x 3 translational vector denoted by t* as follows:

) Rk ik
D* = , 3.2
( 01><3 1 > ( )

where 0;43 is a zero vector with the size of 1 x 3.

R is represented with quaternion. The quaternion representation gives
R linearity to the object motion. It is also useful for avoiding local minima,
in the process of optimization for estimating rotation. R™ is represented
with the quaternion q = [Ag, A1, A2, A3]” as follows:

| MNAA =222 2000 — AoAs)  2(MAs 4 Aoda)
R* = 202 + AoAs) A2 = A2 A2 A2 2(X A3 — Ag)y)
203 — AoA2)  2(A2As 4+ AoA) AT — AT — A3+ A2

With estimated D%, visual hulls in multiple frames can be integrated.
Each voxel of the observation region is projected to a silhouette. Symbols for
explanation of the visual hull integration are defined as described in Figure
3.4.1.

The object O occupies the region O; at i-frame. o; is a voxel included
in O;. Let P; be a projection matrix of camera C;. P; does not change in
multiple frames. 7;; is a projection point of o; in an image of Cj;. Sj; is a set
of Tij-

(D™)~1oy is projected in S;; with P

op € O, 1= f)]((DZk)_l . Ok) € S”

Similarly, (D*)~'o; is projected in Si; with P;:

0; €05 1y = Pi((D¥)'-0;)
== .P](l)“c . Oi) S Skj-
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Figure 3.9: Integration visual hulls of multiple frames.

These equations means that O; is calculated by Ok, D* and Si; at k-
frame. O; given by the information at k-frame represents the object region
calculated by set of cameras in other positions. The virtual position of cam-
eras shown in Figure 3.4.1 are calculated with D*. The integration of visual
hulls at i-frame and j-frame is realized to calculate an intersection of O; and

3.4.2 Robust Estimation Method

Let us denote the position of the s-th outcrop point at i-frame by p’. Consider
that the s-th outcrop point at i-frame and the u-th outcrop point at k-frame
corresponds to each other. The points are actually the same points in the
rigid motion represented by D%. pF should be equal to D%pt.

Based on this relationship, we estimate D% from p! and pF. D¥* can
be estimated by minimizing the difference between p* and D%*pi. The cor-
responding pairs of outcrop points p’ and pF are detected by calculating
the difference. The corresponding pairs make the difference minimized. For
minimizing the difference, we apply Powell’s method [38]. The method can
realize rapid minimization of functions with many parameters while avoiding
local minima.

The problem is that the corresponding pairs of outcrop points might not
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be extracted in different frames. The outcrop point extracted from smooth
parts on the object’s surface tends not to be extracted in multiple frames.
The outcrop point which is incidentally extracted from the smooth part at a
frame might not be extracted at any other frames.

In those case, all the outcrop points at i-frame might not have their
corresponding points in the outcrop points at k-frame, and vice versa. We
introduce the idea of robust estimation to estimate D*. We can estimate the
motion correctly even if some outcrop points do not have their corresponding
points.

For the motion estimation in this paper, we do not need to consider large
amount of motions between i-frame and k-frame. The purpose of the motion
estimation is to obtain relative positions between cameras and the object.
With the estimated motion, we can improve accuracy of the reconstructed
shape instead of increasing cameras. For this purpose, images from slightly
different viewpoints should be obtained. The images are virtually considered
to the images obtained from close-set cameras. Following the discussion
above, we define the error function E to be minimized for estimating D as
the follows:

E =" f (min(p} — D*p!)?) (3.3)

o < My,
f(x)_{Mth x> My,

where M, is a threshold which means the upper limit value allowed as the
object motion. Due to function f, the pair p! and pF is disregarded when
the motion estimated from the pair is sufficiently different from other pairs.
Since we consider that the object motion is small as discussed above, the
motion of the object between adjacent frames can be assumed to be small.
When the motion is small, the number of the corresponding outcrop points
is sufficiently large. We estimate the motion of only frames between adjacent
frames. The motion between any pairs of frames D is estimated as follows:

Dz’k _ Dkfl,k;Dk;fQ,kfl . Di+1’i+2Dt’t+1. (34)
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3.5 Experimental Results

In our proposed method, when the object has sufficient number of outstand-
ing points, it is expected that the accuracy of the reconstructed shapes is
improved. When the object has a smooth surface, outstanding points fail to
be extracted. In order to confirm the validation of our method for objects
in various kinds of shapes, we applied our method to spherical objects with
a simulation shape of triceratops, different numbers of outstanding points,
commonplace objects with smooth surface and real object with sufficient
outstanding points. The experimental results are given below.

3.5.1 Simulation Object

At first, we applied to simulation data of a triceratops to evaluate the valida-
tion of our proposed method. The simulation object is translated by 1 voxel
between adjacent frames, and rotated by 2 degrees between adjacent frames.
20 cameras located on the vertexes of a regular dodecahedron observe the
object. From the cameras, silhouettes are produced. In the settings, about
the same set of silhouettes is obtained by the cameras every 18 frames. All
the silhouette possible to be observed by the cameras during the motion of
the object can be obtained with 18(=72 + 2 + 2) frames. In experimental
results, shapes are reconstructed with all the silhouettes of 18 frames.

Motion of the objects is estimated as described in table and table . The
motion is estimated by tracking outcrop points. In table 3.2, each rotation
parameter is described, and each translation parameter is described in table
3.3. The values of ¢ and N,, which are described in Section 3.2, are 1.679
pixels and 438310 voxels.

The estimation error of the rotation parameter is 0.30 degrees on an aver-
age, and 0.93 degrees at a maximum. The estimation error of the translation
parameter is 0.38 voxels on an average, and 1.24 voxels at a maximum. The
outcrop voxels extracted on the smooth surface make the errors. Focusing
on the translation error, almost all the errors are less than a voxel, which is
within the sampling error. The rotation error cannot be discussed to com-
pare with the sampling error. From the error voxels, we discuss whether the
error is permissible or not.

With Figure 3.5.1, we discuss the difference of the accuracy between the
visual hull reconstructed at 1 frame and the integrated shape. The integrated
shape is virtually reconstructed 360 silhouettes in multiple frames. The cor-
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Table 3.2: Rotational parameters.

x (degrees) y (degrees) z (degrees)
frame || Truth | Diff | Truth | Diff | Truth | Diff
1 0.00 | +0.02 | 0.00 |-0.01| 2.00 | -0.01
2 0.00 | +0.02 | 0.00 |-0.02 | 4.00 | -0.06
3 0.00 | +0.03 | 0.00 |-0.03 | 6.00 | -0.11
4 0.00 | -0.09 | 0.00 | 0.01 | 8.00 | -0.14
5 0.00 | -0.14 | 0.00 | 0.03 | 10.00 | -0.19
6 0.00 | -0.16 | 0.00 | 0.02 | 12.00 | -0.24
7 0.00 | -0.30 | 0.00 | 0.04 | 14.00 | -0.24
8 0.00 [ -0.30 | 0.00 | 0.11 | 16.00 | -0.27
9 0.00 | -0.36 | 0.00 | 0.14 | 18.00 | -0.32
10 0.00 | -0.31 | 0.00 | 0.15 | 20.00 | -0.39
11 0.00 | -0.37 | 0.00 | 0.19 | 22.00 | -0.46
12 0.00 | -0.43 | 0.00 | 0.20 | 24.00 | -0.52
13 0.00 | -0.51 | 0.00 | 0.23 | 26.00 | -0.56
14 0.00 | -0.52 | 0.00 | 0.26 | 28.00 | -0.64
15 0.00 | -0.66 | 0.00 | 0.27 | 30.00 | -0.74
16 0.00 | -0.72 | 0.00 | 0.25 | 32.00 | -0.79
17 0.00 | -0.76 | 0.00 | 0.28 | 34.00 | -0.83
18 0.00 | -0.77 | 0.00 | 0.28 | 36.00 | -0.93

rect shape from 40000 silhouettes (in Figure 3.5.1(a)), the visual hull at 1
frame (in Figure 3.5.1(c)), the outcrop points (in Figure 3.5.1(c) and Figure
3.5.1(d)) and the integrated shape (in Figure 3.5.1(e) and Figure 3.5.1(f))
are drawn.

The outcrop points (in Figure 3.5.1(b)) are extracted on the outstanding
parts on the object surface as described in Section 3.3. By integrating visual
hulls, The additional regions on the abdomen of the triceratops are decreased
as shown in Figure 3.5.1(e) and Figure 3.5.1(f). Compared with the original
visual hulls (in Figure 3.5.1(c) and 3.5.1(d)), the abdomen has a smooth
surface.

We also examined the integrated shapes from a numeric aspect. We
discuss on the difference of the number of voxels between the correct shape
and the integrated shape.
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(e) Integrated visual hull (f) Integrated visual hull (Close up)

Figure 3.10: Result of integration of 18 visual hulls.
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Table 3.3: Translational parameters.

x (voxels) y (voxels) z (voxels)
frame || Truth | Diff | Truth | Dift | Truth | Diff
1 1.00 -0.04 1.00 -0.02 1.00 -0.06
2.00 | +0.08 | 2.00 | +0.03 | 2.00 -0.10
3 3.00 | +0.20 | 3.00 | +0.13 | 3.00 -0.04
4 4.00 | +0.35 | 4.00 | 4+0.14 | 4.00 -0.04
5 5.00 | +0.51 | 5.00 | +0.13 | 5.00 -0.04
6 6.00 | +0.56 | 6.00 | +0.22 | 6.00 -0.08
7
8
9

7.00 | +0.60 | 7.00 | +0.24 | 7.00 | -0.09
8.00 | +0.62 | 8.00 | +0.39 | 800 | -0.05
9.00 | +0.58 | 9.00 | +0.45 | 9.00 | -0.08
10 10.00 | +0.60 | 10.00 | +0.52 | 10.00 | -0.09
11 11.00 | +0.49 | 11.00 | +0.50 | 11.00 | -0.09
12 12.00 | +0.56 | 12.00 | +0.56 | 12.00 | 0.00
13 13.00 | +0.62 | 13.00 | +0.60 | 13.00 | -0.01
14 14.00 | +0.79 | 14.00 | +0.79 | 14.00 | -0.04
15 15.00 | +0.88 | 15.00 | +0.86 | 15.00 | +0.06
16 16.00 | +1.01 | 16.00 | +0.90 | 16.00 | +0.13
17 17.00 | +1.02 | 17.00 | +1.03 | 17.00 | +0.19
18 18.00 | +1.23 | 18.00 | +1.24 | 18.00 | 4+0.28

The reconstructed shape with the volume intersection method is not the
object shapes, but the concavities of the object shape, even using infinite
number of cameras. We employ the 3D shape reconstructed for the object
using 40000 cameras by simulation as the theoretical limitation of the volume
intersection method in order to evaluate the error of each experimental result.
We call the shape correct shape of the object.

Each experimental result is compared with the correct shape based on
the three types of voxels: missing voxels, additional voxels and error voxels.
The missing voxels are those included in the correct shape and not included
in the reconstructed shapes, whereas the additional voxels are those included
in the reconstructed shapes and not in the correct shape. The error voxels
are summation of the missing voxels and the additional voxels.

In Figure 3.5.1, the transition of the three types of voxel is drawn. The
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Figure 3.11: Relation between frames and voxels. (q=1.679)

The correct shape is represented with 438310 voxels. ¢ of the shape is
1.679. It means « is 2.68 for the setting of k£ = \/5/2 The objective value
of the error voxels is 11747 voxels.

By integrating frames, the error voxels are monotonically decreasing. The
number of the additional voxels of the visual hull at 1 frame is 4.62/(54358
voxels, 12.40%). Whereas the number of the integrated shape is 1.95/(22975
voxels, 5.24%). The number of the integrated shape is close to the accuracy
limit by the sampling error. The missing voxels are caused by the error
of the motion estimation. The phenomenon is a specific problem of the
shape integration in multiple frames. However, the missing voxels of the
integrated shape for 18 frames (0.62«, 7237 voxels, 1.65%)) are less than a.
The advantage of visual hull integration is greater than the disadvantage.

To examine the relationship between ¢ and the number of the error voxels,
N,, a and the error voxels for various ¢ are described in table 3.4. In Figure
3.5.1, the transition of the number of the error voxels for various values of ¢
are drawn.

For all values of ¢, although the integrated shapes have different numbers
of the error voxels with the difference of ¢, all the integrated shapes become
more accurate. To conclude the subsection, our proposed outcrop points are
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Table 3.4: Relation between frames and voxels with various gq.

q N, « Add’l(xa) | Miss(x«) | Error(xa)
1.926 | 363118 | 2.49% 1.83 0.94 2.77
1.679 | 438310 | 2.68% 1.95 0.62 2.57
1.564 | 541697 | 2.68% 1.60 0.32 1.92
1.398 | 677086 | 2.78% 1.54 0.60 2.14
1.291 | 860893 | 2.78% 1.55 0.37 1.92

valid to integrate visual hulls in multiple frames. The outcrop points enable
to estimate the object motion for various values of ¢. By integrating them,
the reconstructed shapes become more accurate.

3.5.2 Spherical Objects

Our method requires several outstanding points with sufficient amount of
length for extraction and tracking of outstanding points. In order to ex-
amine minimum number and length required for the outstanding points, we
applied our method to objects in spherical shapes with different number of
outstanding points with various amount of length, by adding fluctuation to
the surface using a sinusoidal function. The position of each point on the
surface of the object (x,y, z) is simulated with parameters 6, ¢ as follows:

x' = coslcosp

y' = sinfcos¢

2 = sing
(0<0<2m,—7/2< ¢ <7/2)

r' = AjcosFia' - cosFymy' - cosFym?'

x = (r+1")cosOcosp
y = (r 4+ r')sinfcosp
z = (r+1")sing

where A; denotes the amplitude of the fluctuation, and F; denotes its fre-
quency. The radius of the sphere r is set to 50. The objects and their
outcrop points are drawn in Figure 3.13. Since shapes of the outstanding
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Figure 3.12: Relation between frames and voxels with different ‘¢’s.

points created by the fluctuation is controlled by A;s and Fjs, the 3D shape
reconstructed with our method is expected to be more improved with larger
A; and larger Fj. The results for F; = 4,6 and A; = 2,4 are shown below.

In these experiments, objects are translated by 1 voxel along X,Y,Z-axes
and rotated by 2 degrees around Z-axis for each frame. 20 cameras are set
on the vertexes of a dodecahedron surrounding the object. In the settings,
about the same set of silhouettes is obtained by the cameras every 18 frames.
All the silhouette possible to be observed by the cameras during the motion
of the object can be obtained with 18(=72+-2+2) frames. Thus we employ 18
sequential frames of all the cameras for shape reconstruction by our method
as shown in Figure 3.14.

Figure 3.14(a), (b), (c) and (d) illustrate the transition of three types
of voxels for each objects. In the experimental results, except for the object
with F; = 4, A; = 2, the error voxels monotonically decrease with the increase
number of the images up to 18 frames. The error voxels for the object with
F, =4, A; = 2 are increasing after the number of frames exceeds nine. The
surface of the object does not have sufficient number of outstanding parts.
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When the outstanding parts on the surface do not have enough length, the
parts should not be extracted as the outcrop points. To conclude the result,
F; should be larger than 6 or A; should be larger than 4 in order to improve
accuracy of the 3D shape by our method. Since r is set to be 50, A, = 4
corresponds to 8% of the length of the whole object, and 6.24 pixels in the
silhouettes. In the shape with F; = 6, outstanding points exist every 30
degrees on the surface. These are the conditions required for the shapes of
the target objects for improving accuracy with our method.

3.5.3 Common Objects with Smooth Surfaces

In order to verify the applicability of method to the objects in the real world,
we applied our method to the common objects that seem to have difficult,
for extraction and tracking, the outstanding points due to the smoothness
of the surface. We simulated the shape reconstruction with our method for
objects in shapes of a banana, a teapot and a queen of chess. Their results
are evaluated by the error voxels similar to the experiment in Subsection
3.5.1.

The outcrop voxels for a banana are shown by dots in Figure 3.15(d).
As shown by the graph in Figure 3.16(a), the error voxels increase after the
number of frames used for shape reconstruction exceeds seven. It means
that the outstanding voxels of the banana cannot be effective for improving
accuracy of the reconstructed shape for this object. It is caused by small
number and limited length of outstanding points.

Whereas, as shown in Figure 3.16(b) and 3.15(c), the number of the error
voxels for the other objects decreases until 18th frames. These results mean
that our method based on the outstanding voxels can be effective for the
objects in more various shapes than expected.

3.5.4 Real Object

We also applied our method to a real object. We employed a toy triceratops
secured by a thread and we took their images with 19 cameras surround-
ing the object. Small motion was simulated by swinging the toy triceratops
slightly. The silhouette from each camera is extracted based on the differ-
ence between an observed image and its background image in YUV color
space. As illustrated by the dots in Figure 3.17(b), the outcrop voxels are
extracted from the real object. However, the shape reconstructed using all
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(h)

Figure 3.13: Integration for images of 18 frames : (a) An object shape of
Fi=4, A;=2. (¢) F;=4, Ai=4. (e) F;=6, A;=2. (g) F;=6, A,=4. (b), (d), (f)
and (h) are outcrop points for each shape.
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Figure 3.14: The ratios of error voxels of shapes from 18 frames : (a) F;=4,
Ai=2. (b) Fi=4, Ai=4. (¢) F;=6, A;=2. (d) F;=6, A;=4. In (a), summations
of additional voxels and missing voxels are increasing after 9th frame, even
if the frontier points (FPs) are used. In (b), (¢) and (d), the summations are
decreasing until 18th frame with both kinds of feature points.
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(d) (f)

Figure 3.15: Result of integration for images of 18 frames : (a), (b) and (c)
are original shapes of a banana, a teapot and a queen of chess respectively.
(d), (e) and (f) are emerged voxels for each shape. (g), (h) and (i) show error
voxels of integrated visual hulls. In (h) and (i), summations of stray voxels
and missing voxels are decreasing until 18th frame.
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Figure 3.16: Transition of the error voxels

(a), (b) and (c) show error

voxels of integrated visual hulls. In (b) and (c), summations of stray voxels
and missing voxels are decreasing until 18th frame.
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the images of 5 frames has missing parts. [t is caused by missing of the sil-
houettes extracted by background subtraction. When colors of the object in
the observed images are similar to those of the background, the silhouette is
missing. Since the 3D shape is reconstructed as the intersections of all visual
cones, the reconstructed shape has missing parts when one of the silhouettes
has missing regions. This problem often happens for the volume intersection
method using a large number of cameras as well as this situation.

In order to cope with this problem, it is proposed in the previous work
to ease the condition for extracting the visual hull from visual cones [46] ;
instead of calculating pure intersection of visual cones for all the cameras,
voxels included in the visual cones for at least n — N0 cameras are allowed
to be included in the visual hull. Referring to this solution, Ny ., was set
as 1 (Figure 3.17(e)) and 2 (Figure 3.17(f)) in our experiment. In the case
of Najow = 1, more accurate shape is reconstructed with all the images of all
the frames, compared with the shape reconstructed from images of a single
frame. But even if we make N0, larger than 1 for 19 cameras, the result is
not improved any more than the shape of Ny = 1.

Then, how can we set the value of Nyj,,7 Although several researchers
have referred to the configuration problem for Ny, in previous works [2],
deeper discussion is required for an adequate configuration of Nyjow.

Let us define that silhouette missing rate is p and the number of cameras
is N. False Rejection (FR) means an outside voxel is misclassified as inside.
False Acceptance (FA) means an inside voxel is misclassified as outside. For
an voxel, corresponding pixels in the k-silhouettes are missed at the rate of
NCepF(1 = p)VF. In case Nyow is set to Ny, the focused voxels is included
in the visual hull if £ < Ny, is satisfied. The rate P(F R) that an inside voxel
is not included in the visual hull is given by :

Nip,

P(FR) = 1-)Y yCip*(1—p)" " (3.5)

The change of P(FR) for various values of NV and p is shown in Table 3.18.
How much missing parts are allowed is determined by users with the
tables. Generally, high silhouette missing rates and big numbers of cameras
require that Ny, is set to a larger value.
However FA is also discussed in [2], only outside voxels which are not
included in all silhouettes are focused. How many silhouettes classify the
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(a) Target object (b) Emerged voxels

(c) Visual hull at 1st frame (Part) (d) Integrated visual hull
(Na,llow = 0, Part)

(e) Integrated visual hull (f) Integrated visual hull
(Nallow = 1, Part) (Nallow = 2, Part)

Figure 3.17: Result of integration of images of 5 sequencial frames.
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(b) Relationship between values of Ny, and voxel missing rate in case
that silhouette missing rate is 5%.

Figure 3.18: Relationship between values of Ny, and voxel missing rate in
simulation.
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focused voxel as inside is important element to calculate the value of P(F A).
The number how many silhouettes classify the focused voxel as inside depends
of the complexity of the object and the arrangement of the cameras. It differs
according to voxels. P(F A) is difficult to be calculated. How much additional
parts are allowed is determined by users from the reconstructed shapes with
various values of V.

Several values of Ny, is set for reconstructing shapes of Figure 3.17. The
number of the missing and additional voxels are shown in Table 3.5. The
correct visual hull in Table 3.5 is reconstructed from the manually extracted
silhouettes.

Table 3.5: Relationship between values of Ny, and voxel error rate in real
environment.

Nattow Visual hull | Additional Voxels | Missing Voxels
(Correct VH) 277496 0 0
0 265472 10502(3.78%) 22526(8.12%)
1 309424 34652(12.49%) 2724(0.98%)
2 343754 66789(24.07%) 531(0.19%)

Even when N, is set to 1, 12.49% additional voxels of the correct
shape are included in the reconstructed shape, whereas the missing rate is
less than 1%. When N0 1S set to 2 or more, much more additional voxels
is included in the reconstructed shape, whereas the missing rate does not
decrease so much. From the Table 3.5, the best configuration of the Ny, is
1 for the data.

In order to obtain better results, we need to improve the image processing
for extracting the silhouettes. One solution for the problem is the silhouette
refinement with the random pattern backgrounds as described in Chapter 2.
Another solution is an improved shape integration method in multiple frames
as described in Chapter 4. In the method, only silhouettes that give good
result are used to reconstruct shapes, since we can obtain many silhouettes
in multiple frames. The method enables to reconstruct accurate shapes from
the silhouettes with missing parts.
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3.6 Conclusions

In this Chapter, we proposed a method for improving accuracy of the 3D
shapes reconstruction with the volume intersection method by using the rigid
motion of the target object. In order to estimate the motion of the object
from the visual hull composed at each moment, we proposed to use feature
points called outcrop points. In the experiments both with simulated objects
and a real object, it is confirmed that the outcrop points are effective for esti-
mating the motion of the objects when the object has sufficient outstanding
points on its surface. To conclude the Chapter, more accurate shapes can
be reconstructed, compared with those from images of a single frame. Fur-
thermore, our method is applicable even for the objects that seem to have
smooth surface.

Similar to the conventional volume intersection method, the reconstructed
shape is sensitive to the error of image processing for extracting the silhou-
ettes. One solution for the problem is the silhouette refinement with the
random pattern backgrounds as described in Chapter 2. Another solution
is an improved shape integration method in multiple frames as described in
Chapter 4. Together with the refined silhouette extraction and the refined
shape integration, the visual hull integration method with the outcrop point
extraction should improve the integrated shapes much more.
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Chapter 4

Frame Evaluation for
Silhouette Integration

4.1 Introduction

Shapes of objects are reconstructed from silhouette with the volume inter-
section method [23, 30], The silhouettes are extracted from images obtained
by multiple cameras. Each silhouette defines the region in which the object
is possible to exist. The object region is calculated as the intersection region
of the regions from all silhouettes. In the volume intersection method, the
calculated region is called visual hull.

The visual hull is calculated more accurately when more cameras capture
the object. However, it is not realistic to set the infinite number of cameras in
real environments. To make images captured from a large number of cameras,
we proposed outcrop point extraction method for visual hulls and estimated
object motion, as described in Chapter 3. The silhouette integration in mul-
tiple frames provides us accurate reconstructed shapes. Outstanding points
on the object surface tend to be extracted as the outcrop points.

A problem of the volume intersection method in multiple frames is to
reconstruct shapes with large missing parts, when object motion is estimated
with a large error. The reconstructed shapes in multiple frames are calculated
as the intersection of visual hulls of all frames. Only a set of frame with the
large error causes large missing parts in the reconstructed shape in multiple
frames. The large error in object motion estimation is caused by failure
of the outcrop point extraction. Missing parts and additional parts of the
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silhouettes adversely affect the outcrop point extraction. The outcrops are
extracted under the assumption that the extracted silhouettes are complete.
In case the extracted silhouettes include the missing and additional parts,
corresponding outcrop points between different frames become difficult to be
extracted.

In this Chapter, we proposed a method to suppress the missing parts in
the reconstructed shapes from the silhouettes in multiple frames.

The error in object motion is the reason of the missing parts in the recon-
structed shape. However, the motion cannot be estimated completely from
the outcrop points which may not have the corresponding points. Since the
answer motion is not given, the error in motion cannot be estimated. When
the outcrop points may not have the corresponding points, the residual error
of the motion estimation cannot represent the error in the object motion.
Even when the outcrop points are translated with the answer motion, the
residual error of the motion estimation does not become 0. It is caused by
the outcrop points with no corresponding points.

We focused on the fact that outstanding points on the object surface tend
to be extracted as the outcrop points. The outstanding points characterize
the object shape. Using this fact, we could select frames that retain the out-
standing points and process those into the reconstructed shape in multiple
frames. Even in previous works, the fact is focused for surface smoothing
9, 11, 24, 1] . On the surface on the reconstructed shape, a mesh cover-
ing the shape consists of frontier points, which is the origin of the CSPs.
The positions of the frontier points are fixed when the surface is applied to
the smoothing process. The reconstructed shape retain outstanding points,
which characterize the object shape. We define a function for measuring how
the outstanding points are kept in the reconstructed shape by integrating a
visual hull of a frame. By integrating visual hulls of only frames with high
score, the reconstructed shape in multiple frames is guaranteed to include
the outstanding points.

In Section 4.2, we will propose the function for measuring how the out-
standing points are kept in the reconstructed shape by integrating a visual
hull of a frame. The procedure by which the shape is reconstructed using
the function in multiple frames is explained. Section 4.3 discusses how the
function is affected by missing and additional parts of extracted silhouettes.
The experimental results are presented in Section 4.4. The validity of the
proposed function is verified on the basis of the experimental results. At the
end of the Chapter, Section 4.5 concludes this Chapter.
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4.2 Evaluation Function Based on Preserving
Outcrop Points

When the rigid object motion, Dy, between the i-frame and k-frame is cor-
rectly estimated, the outcrop points, O FP;, which are extracted in the ¢-frame,
are included in Vi by translating Dy;. Similarly, the outcrop points, OF,
which are extracted in the k-frame, are included in V; by translating D;y.

pi € OF;, Diyp; € Vi, (4.1)
pr € OPy, Dyip € V. (4.2)
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Figure 4.1: Frame evaluation from visual hulls and outcrop points.

If Egs. (4.1) and (4.2) are completely satisfied, all outstanding parts of the
object shape will be included in the reconstructed shape in multiple frames.
They are not completely satisfied in real environments, because there are
missing parts of visual hulls or errors in the estimated motion. To evaluate
how many outstanding parts are included in the reconstructed shape, we can
utilize the rate of outcrop points that satisfies Egs. (4.1) and (4.2). The rate,
E,.(i,k), is defined by

Mgk + N

Em(ia k) - 9 )

(4.3)
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where

— n{pilpi € OF;, Digp; € Vi}
. n{plp € OR}
n{pk|pk € OPFy, Diipi € Vi}

n{pk|pr € OF}

Nkg; =

Here, n{-} is the number of voxels included in a set. OP, and OPF; are
sets of outcrop points in the i-frame and k-frame. V; and V}, are sets of voxels
included in the visual hulls of the i-frame and k-frame.

The evaluation function, F,,(i, k), ranges from 0 to 1. When E,,(i, k)
indicates a large value, the integrated shape preserves many outcrop points
within it. Conversely, a small value for E,,(i,k) means that the integrated
shape has lost the outcrop points. By only using frames where E,,(i, k)
has large values, the integrated shape can preserve outstanding parts. If
threshold E is given, appropriate frames can be selected by E,,(i,k) < E.
When the 0-th frame is chosen as the base frame, the frames that satisfy
E,(0,7) < E™ are selected. Relabeling the frames as ¢'(i' = 1,--- , M'), the
integrated shape is calculated as an intersection of the visual hulls of V.

4.3 Outcrop Point Extraction from Incom-
plete Silhouettes

The missing and additional parts of the silhouettes might lead to the miss-
ing of outcrop points. The evaluation function E,,(i, k) is designed on the
assumption that the outcrop points are included in the object region. When
many outcrop points are missed, E,,(i, k) is not calculated correctly.

In this Section, first, we discuss the silhouette refinement to extract more
outcrop points. We also examine that how the missing and additional parts
of the silhouettes affect the value of E,, (i, k).

4.3.1 Silhouette Refinement

In recent works, many methods have been proposed to extract accurate sil-
houettes for the shape reconstruction, although the methods suppose the
silhouette extraction not in multiple frames but in only 1 frame. Under the
assumption of the coexistence of neighborhoods in the voxel space, graph cut
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theory is used for the silhouette extraction [45]. The assumption for charac-
teristics of the background objects is also used for the silhouette extraction
[51]. The shapes can be reconstructed without the silhouette extraction from
images [54]. In the method, the obtained images are divided into small re-
gions in advance. The shape is reconstructed to keep the consistency between
colors of the divided small regions and the shape. When many cameras are
used for the shape reconstruction, the color consistency in images is possible
to be a cue of the silhouette extraction. Based on space carving [21] or voxel
coloring [42], the extracted silhouettes can be refined by the consistency of
obtained images as described in Chapter 2. In other methods, the shape is
reconstructed under the assumption that the silhouettes must be missing.
With SPOT(Sparse Pixel Occupancy Test) [5, 46] or SfIS(Shape from In-
consistent Silhouettes) [22], how many times a voxel is projected into the
silhouettes is counted. The reconstructed shape is a set of the voxels which
are projected into the silhouette more times than a threshold. The method
ignores that some voxels are projected to out of silhouettes in a few images.
The missing parts of a few silhouettes do not affect the shape reconstruction.

Although each method has some assumptions, a certain level of the sil-
houette and shape refinement is given by the methods. We adopt the sil-
houette refinement method by the consistency of colors in Chapter 2. In
addition to the method, the shape is reconstructed with SPOT [5] to avoid
that the missing parts of silhouette make the missing parts of the recon-
structed shape. However, any method cannot refine the silhouettes and the
shapes completely.

The percentages of missing and additional regions in silhouettes are de-
scribed as 4.3% and 2.1% in [5]. We have also described the missing percent-
age as less than 5.21% and refined to 2.33% in Chapter 2. In this Chapter,
we assume that the percentages are less than 10%. Under the assumption,
how many the outcrop points are extracted correctly is discussed.

4.3.2 Silhouette Incompleteness and Outcrop Extrac-
tion

We reconstruct a simulation shape of a triceratops from obtained silhouettes
with random noise. The random noise is stochastically generated in the
silhouettes. From the silhouettes with random noise, the outcrop points are
extracted. We examine how many outcrop points are included in the original
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Table 4.1: Relation between silhouette missing/additional percentages and
outcrop point extraction. (6 cameras)

Additional percentage
1% 2% 5% 10% 20%

1% | 88.6% 87.2% 82.8% 61.0% 19.8%
(88)  (94)  (99)  (159)  (582)
2% | 88.0% 86.6% 85.2% 65.7% 24.3%
(125)  (119)  (142)  (198)  (668)
5% | 90.0% 85.5% 83.1% 75.5% 44.2%
(279)  (297)  (337)  (433)  (978)
10% | 89.3% 88.9% 86.9% 79.3% 53.9%
(653)  (682)  (800)  (929) (1434)
20% | 90.6% 91.9% 90.6% 87.2% 69.7%
(1072) (1142) (1215) (1222) (1302)

Missing percentage

Table 4.2: Relation between silhouette missing/additional percentages and
outcrop point extraction. (12 cameras)

Additional percentage
1% 2% 5% 10% 20%
1% | 92.0% 93.1% 93.2% 93.2% 94.0%
(1129) (1245) (1673) (2311) (4873)
2% 195.1% 95.6% 96.0% 95.6% 96.0%
(2976)  (3206) (4083) (5357) (6967)
5% | 97.0% 97.4% 97.0% 96.8% 96.1%
(7100) (7006) (6965) (6103) (2336)
10% | 97.4% 97.8% 97.0% 96.4% 94.8%
(5003)  (4602) (3270) (1867)  (135)
20% | 96.3% 97.4% 97.8% 98.6% -
(1055)  (923)  (447) (73) (0)

Missing percentage
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Table 4.3: Relation between silhouette missing/additional percentages and
outcrop point extraction. (20 cameras)

Additional percentage
1% 2% 5% 10% 20%

1% | 97.5% 97.4% 97.7% 98.1% 98.4%
(3480)  (4006)  (5569)  (7807)  (2766)
2% | 98.4% 98.5% 98.4% 98.5% 98.5%
(7002)  (7361)  (7873)  (5618)  (200)
5% | 98.9% 98.8% 98.7% 98.5% -
(5935)  (5230)  (3391)  (867) (0)
10% | 98.8% 98.2% 97.8% 100.0% -
(1887)  (1413)  (459) (16) (0)
20% | 96.9% 100.0% 100.0% - -

(131)  (66) (1) (0) (0)

Missing percentage

region of the object. When the number of cameras is changed to 6, 12 and
20, the percentage that the outcrop points are included in the original shape
is changed as shown in table 4.1, table 4.2 and table 4.3. The elements over
90% are written in bold characters and the elements over 95% are written
with underlines. The elements in parentheses are values of the number of
extracted outcrop points. Under the conditions that the number of cameras
is small, there are many missing parts of the silhouettes and less additional
parts of the silhouettes, false outcrop points not included in the original
regions are extracted as shown in table 4.1. The false outcrop points are
included in the additional regions of the reconstructed shape. When the
number of cameras is greater than or equal to 12, most of extracted outcrop
points are included in the original regions, even if there are many missing
parts and many additional parts in the silhouettes as shown in table 4.2 and
table 4.3. In conclusion, most of extracted outcrop points are included in the
original regions under the conditions that the number of cameras is greater
than or equal to 12 and the percentages of missing parts and additional parts
of silhouettes are less than 10%.
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4.4 Experimental Results

The experimental results for simulated and real objects were used to evaluate
how valid our proposed function, E,,(i, k), was. We examined whether the
outstanding parts on the object’s surface were preserved.

4.4.1 Simulation Data

We obtained silhouettes from the simulation data of a triceratops toy. We
arranged 12 cameras to observe the toy. We adopted our proposed method
of volume integration for the silhouettes. The percentages of the missing and
additional parts of silhouettes were set to A: 1%, B: 2%, C: 5%, D: 7.5%
and E: 10%. The settings of the number of cameras and the percentages
of the missing and additional parts correspond to Table 4.2. The objects
in these experiments were translated by +0.5 voxels along the XY, and Z-
axes and rotated by 1 degree around the axes for each frame. Experimental
results for A B,C,D and E are shown in Figure 4.2, 4.3, 4.4, 4.5 and 4.6. (a)
is a original shape, (b) is a visual hull reconstructed in 1 frame, (c¢) is an
integrated shape in 50 frames, and (d) is an integrated shape in 50 frames
with our proposed method. For our method, E is set to 0.97. All shapes are
depicted with surface patches obtained using the marching cube algorithm
(28] and a smoothing process.

The visual hull in one frame includes many additional regions on its sur-
face, which angulate visual hull as shown in each Figure (d) of A,B,C,D
and E. Some additional regions are floating away from the visual hull. The
shape integrated without our method has many missing parts as shown in
each Figure (c). This is caused by frames that have large error in estimating
motion. Especially, E of Figure 4.6(c) illustrates no regions since there are
some frames which do not preserve the outcrop points on the object surface.
All integrated shapes except for D and E have accurate shapes with our new
method. The integrated shape includes the original regions. The integrated
shape in Figure 4.5(d) illustrates the reconstructed shape with missing parts
in the triceratops’ horn. The shape is reconstructed from silhouettes with
many missing parts. The missing parts of the visual hull have been accu-
mulated into the integrated shape. The shape retains the outstanding parts
unlike that with the conventional method of integration. SPOT [5] [46] with
optimal parameters described in Section 4.1 will solve the missing partially.
In Figure 4.6(d), the integrated shape is the same shape to the shape in Fig-
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KN

(a) Original shape (b) VH of one frame

(c) Conventional VH (d) Proposed VH

Figure 4.2: Reconstructed shape of triceratops toy. (A : (Percentage missing,
Percentage added)=(1%, 1%))
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(c) Conventional VH (d) Proposed VH

Figure 4.3: Reconstructed shape of triceratops toy. (B : (Percentage missing,
Percentage added)=(2%, 2%))
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(a) Original shape (b) VH of one frame

(c) Conventional VH (d) Proposed VH

Figure 4.4: Reconstructed shape of triceratops toy. (C : (Percentage missing,
Percentage added)=(5%, 5%))
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(c) Conventional VH (d) Proposed VH

Figure 4.5: Reconstructed shape of triceratops toy. (D : (Percentage missing,
Percentage added)=(7.5%, 7.5%))

ure 4.6(b), since any frame does not satisfy F,,(0,i) > E* under the missing
and additional percentages.

In Figure (d) of A, B and C, there are not many additional regions on the
object surface unlike the visual hulls from the silhouettes of one frame; there
are not many missing parts unlike the shapes with the conventional method of
integration. Compared with the original visual hulls, the shapes with our new
method have smooth surfaces while preserving the outstanding parts on their
surfaces. They are similar to the original shapes. To conclude, our proposed
evaluation function, E,,(i, k), accurately preserves the outstanding parts on
the object surface when the percentages of the missing and additional parts
are below 10%.

We also evaluate the integrated shapes with the evaluation method de-
scribed in Subsection 2.2.1. The percentages of the additional regions, the
missing regions and the error regions for the original regions are shown in
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(a) Original shape (b) VH of one frame

(c) Conventional VH (d) Proposed VH

Figure 4.6: Reconstructed shape of triceratops toy. (E : (Percentage missing,
Percentage added)=(10%, 10%))
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Table 4.4. Compared with the visual hulls of (b), the shapes of (d) recon-
structed with our proposed method have much less error regions. Note that
the missing regions are increasing by integrating visual hulls since we also
adopt SPOT to reconstruct the integrated shapes. A voxel not included in
the visual hull in one frame can be included in the integrated shape when we
use SPOT.

Table 4.4: Silhouette integration and volume error regions. (A : (Percentage
missing, Percentage added)=(1%, 1%), B : (2%, 2%), C : (5%, 5%), D :
(7.5%, 7.5%), E : (10%, 10%), with 12 cameras. )

Missing percentage Additional percentage FError percentage

A (b) 1.3% 28.8% 30.2%
(c) 17.4% 15.6% 33.0%
(d) 0.9% 25.6% 26.5%

B (b) 2.9% 16.3% 19.2%
(c) 25.4% 21.0% 46.5%
(d) 0.2% 35.1% 35.2%

C (b) 19.3% 39.1% 58.4%
(c) 35.1% 17.0% 52.1%
(d) 2.5% 27.6% 30.1%

D (b) 13.5% 10.0% 53.5%
(c) 87.6% 0.2% 87.9%
(d) 73.5% 1.3% 74.8%

E (b) 66.0% 16.5% 82.5%
(c) 100.0% 0.0% 100.0%
(d) 66.0% 16.5% 82.5%

4.4.2 Real Environment

We captured a triceratops toy with multiple cameras. Its shape was recon-
structed from the silhouettes in multiple frames. The integrated shapes with
and without our proposal method are shown in Figure 4.7. An average of
8.54% of the silhouettes was missing. Additional silhouettes were 5.27%. The
silhouettes were refined with a silhouette refining method [52]. The threshold
E'™ was set to 0.95. There were some small missing parts in the integrated
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shape obtained with the conventional method of integration as shown in Fig-
ure 4.7. The feet of the triceratops had gaps. The integrated shape with
our new method did not have such missing parts. Outstanding points on the
surface were preserved.

The shape of a mammoth toy was similarly reconstructed from silhouettes
in multiple frames. The integrated shapes with and without our new method
are presented in Figure 4.8. An average of 3.22% of the missing silhouettes
was extracted. Additional silhouettes were 4.29%. A large part of the head in
the integrated shape obtained with the conventional method of integration is
missing. The shape integrated with our proposed method does not have such
missing parts. Outstanding points on the surface are preserved. Compared
with the shape reconstructed from silhouettes from one frame, the areas of
additional regions on the surface of the shape are decreased.

We also extract silhouettes with the random pattern backgrounds de-
scribed in Chapter 2. The silhouettes are extracted from obtained images of
a horse toy. The integrated shapes are reconstructed as shown in 4.9. An
average of 7.9% of the missing silhouettes was extracted. Additional silhou-
ettes were 11.0%. We assumed that the missing and additional percentages
are below 10% in Section 4.3. The percentage added is over 10% in this case.
We cannot guarantee that our proposed function E,,(i,k) is valid in this
case since the outcrop point are not guaranteed to be included in the object
region under the missing percentage. If the threshold E!" is set to 0.90, only
5 frames are adopted to be integrated. It caused by the large missing rate.
The integrated shape from the silhouettes in that 5 frames (in Figure 4.9(d)),
however, is more accurate shape than the visual hull of 1 frame (in Figure
4.9(b)). The integrated shape preserves the outstanding parts.

4.5 Discussions and Conclusions

In this Chapter, we proposed an intelligent method of integrating silhou-
ettes in multiple frames, which enabled us to reconstruct accurate shapes
even if there were missing or additional parts in the silhouettes. We could
reconstruct a more accurate shape than the visual hull of one frame by in-
tegrating the silhouettes in multiple frames. We discussed how the missing
and additional regions affect the extraction of outcrop points. Based on the
discussion, we designed an evaluation function, E,, (i, k), which indicates how
many outcrop points are preserved in the integrated shape. Some integrated
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(¢) Conventional VH (d) Proposed VH

(e) Proposed VH with color

Figure 4.7: Reconstructed shape of triceratops toy.
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(a) Obtained image (b) VH of one frame

(c) Conventional VH (d) Proposed VH

(e) Proposed VH with color

Figure 4.8: Reconstructed shape of mammoth toy.
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(a) Obtained image

(c) Conventional VH (d) Proposed VH

(e) Proposed VH with color

Figure 4.9: Reconstructed shape for a toy of horse with random pattern
backgrounds.
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shapes with E,, (i, k) were presented as experimental results. These shapes
included outstanding parts of the object. We solved the problem where in-
tegrated shapes were missing when motion was incompletely estimated. The
shapes were also more accurate than when the visual hull was calculated in
one frame.

In future work, we intend to set threshold E* automatically, which will
be set by the percentages of missing and additional parts of silhouettes, or
the numbers of available frames.
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Chapter 5

Conclusions and Discussions

5.1 Conclusions

We discussed 3D shape reconstruction from silhouettes of multiple frames.
Our main contribution of our research is the elimination of assumptions on
colors and textures of target objects.

First, accurate silhouette extraction is required to reconstruct shapes from
silhouettes. We proposed the random pattern background for extraction
silhouettes of objects in unknown colors, as described in Chapter 2. The
random pattern has separated small regions which are filled with randomly
selected colors. With the random pattern backgrounds, silhouettes with less
missing parts can be extracted even for the objects in unknown colors. Con-
sidering the color consistency between multiple cameras, the less missing
parts are also refined.

Next, the object motion estimation is required to integrate silhouettes
of multiple frames. The rigid object motion is considered as the changing
positions of cameras virtually. The difficulty of the motion estimation is that
the object shape is reconstructed only from silhouettes. The reconstructed
shape is called the visual hull. Since the visual hull includes the additional
regions, the corresponding points between different frames are difficult to be
extracted. From the visual hull and silhouettes, we extracted new kind of
3D feature points, as described in Chapter 3. We named the feature points
as outcrop points. The outcrop points are guaranteed to be included in the
object region of the visual hull, when the target object has a surface with
outstanding points. We confirmed that only few and small outstanding points
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are required for the condition. Most of general objects in the real world have
such outstanding points.

Whereas, even when the error of the estimated motion is small, the in-
tegrated shape of multiple frames has many missing parts. The error of
the motion estimation is caused by failure of feature point extraction. To
estimate the object motion correctly, the completely corresponding feature
points between frames are required. By the incompleteness of the silhouette
extraction, the corresponding points are difficult to be extracted. Eventually,
the motion estimation has an accuracy limit. We focused on the fact that the
outcrop points tend to be extracted on the outstanding parts on the object
surface, as described in Chapter 4. We proposed the visual hull integra-
tion method which preserves the outstanding parts of the object shape. The
evaluation function represents how much outstanding parts are preserved by
integrating a visual hull of a frame. Based on the evaluation, integrated vi-
sual hulls are selected. With our proposed method, the integrated shape of
multiple frames can preserve the outstanding points in it.

5.2 Discussions

In this paper, the silhouette extraction and the silhouette integration are
discussed. In this Section, the relationship between them is discussed. We
describe how the silhouette extraction is affected by the silhouette integra-
tion, and conversely.

5.2.1 Silhouette Extraction for Silhouette Integration

The accuracy of the silhouette extraction improves that of the silhouette in-
tegration. The accuracy of the outcrop extraction depends on that of the
silhouette extraction as described in Chapter 4. The missing parts and addi-
tional parts of the extracted silhouettes prevent the outcrop point extraction.
Extracted outcrop points are not guaranteed to correspond to outstanding
points on the object surface, when the silhouettes have the missing and ad-
ditional parts. The error of the outcrop point extraction leads to the motion
estimation error for the object. In other words, the accuracy of the silhou-
ette extraction leads to the accuracy of the object motion estimation, and
the accuracy of the silhouette extraction.
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Then, is the accuracy of the silhouette extraction enough for integrat-
ing silhouettes? We have already discussed on the required accuracy of the
silhouette extraction for the silhouette integration in Chapter 4. The exper-
imental result of the silhouette integration with random pattern background
is shown in Figure 4.9. In Chapter 4, our proposed silhouette integration
method assumes the missing and additional regions are less than 10%. With
the random pattern backgrounds, the assumption is almost satisfied. In the
experimental result, it is confirmed that the integration method can be ap-
plied to the silhouettes extracted with the random pattern backgrounds.

The availability of the silhouette integration depends not only on the ac-
curacy of the silhouette extraction, but also on the complexity of the object
shapes. We have discussed about how much complexity is required for the ob-
ject motion estimation in Chapter 3. To extract sufficient outcrop points, the
objects should have outstanding parts with sufficient length and frequency
on their surfaces. The length is more than 8% of whole object shape, and the
frequency is an outstanding part per 30 degrees. The condition is satisfied
with general objects in the real world. When the object motion between any
frames can be estimated, silhouettes can be integrated with our proposed
method based on frame evaluation as described in Chapter 4.

5.2.2 Silhouette Integration for Silhouette Extraction

The accuracy of the silhouette integration also improves that of the silhouette
extraction. More number of obtained images helps us to refine the extracted
silhouettes. For the silhouette refining, colors of the object are estimated
from the obtained images.

The estimated colors are compared with their corresponding colors of
backgrounds in case that our silhouette refining method is used as described
in Chapter 2. When the colors are similar, we can judge which parts are
included in the object. More number of obtained images leads to the ac-
curate estimation of the object colors. We estimate the object colors under
the assumption that the colors are diffuse colors. When large number of
images is given, obtained specular colors can be regarded, since the specular
colors are clearly obtained only from limited angles. The accuracy of esti-
mated diffuse colors supports the accuracy of the silhouette refining. With
SPOT (Sparse Pixel Occupancy Test) [5, 46] or SfIS(Shape from Inconsistent
Silhouettes) [22], the missing parts of the visual hulls can be increased, even
if the extracted silhouettes have the missing parts.
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Then, is the accuracy of the silhouette integration enough for integrating
extraction? In Chapter 4, we concluded it is required that the silhouette are
extracted with less than 10 % missing and additional parts and the number
of images is more than or equals to 12 for the silhouette integration. From
the images obtained from 12 cameras in n frames, 12n images are given in the
silhouette integration method. Even if only 1/10 cameras can observe a part
of the object surface, 1.2n cameras expect to observe the part in our method.
When 1.2n is more than or equal to 3, the specular element can be specified.
By integrating silhouettes in 3 frames or more, the part is guaranteed to be
observed with 3 cameras or more. The selected frames should not be only
adjacent frames, since cameras located sparsely are required to observe whole
surface.

The increase of the number of the cameras provides the accuracy of the
color estimation for the object. A color of each region on the object surface
is calculated from images of cameras that observe the region. In proposed
method, which camera observes the region is determined from the positions of
the cameras [26, 40] . Diffuse colors are correctly extracted with the increase
of the number of cameras, since specular colors are specified as an outlier.
When the diffuse colors are correctly estimated, silhouettes are also correctly
refined with our proposed method discussed in Section 2.4.

It is true under the condition that illuminance intensity for each part
of the object surface does not change in multiple frames. The condition is
difficult to be satisfied in general. In a previous work, geotensity restriction
has been proposed to reconstruct shapes with the illuminance change [29].
To regard the illuminance change, the object should be equally illuminated
from all directions. Instead of the illumination settings, we can adopt an
intelligent method for silhouette extraction. In this paper, we extract the
silhouettes focus on values of U and V' in YUV color space. Y indicated the
intensity. With the silhouette extraction method, some illuminance change
can be regarded. Alternatively we also adopt the geotensity restriction for
shape reconstruction in case that 20 cameras are provided to observe the
object, since extracted silhouettes can be refined enough with 20 cameras as
described in Chapter 2.
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5.2.3 Positions of Cameras Given by Multi-frame Im-
age Integration

Outcrop parts on an object surface can be observed by cameras at various
directions. Many cameras are not required to observe the outcrop parts. The
outcrop parts characterize a shape of an object. The outcrop parts play an
important role in aesthetic aspect.

The range of directions for cameras which observe smoothing parts on the
object surface is narrower than that for cameras which observe outcrop parts.
For reconstructing smoothing surfaces, more cameras are required. As shown
in Fig 5.3, it is confirmed that our proposed silhouette integration method
provided silhouettes obtained from cameras located at sequential positions.
The sequential position change is efficient for reconstructing smooth surfaces.

In Section 4.4, 12 cameras are set shown in Figure 5.1. The cameras are
homogeneously located on surface of a sphere. In 50 frames, the cameras pro-
vide many silhouettes shown in Figure 5.2, which is discussed in Chapter 3
and Chapter 4. For adopting the frame selection method proposed in Chapter
3 to the cameras, only cameras shown in Figure 5.3 are used to reconstruct
3D shapes. Since a few frames guarantee to preserve outstanding parts in
the reconstructed shapes, only a few cameras are selected. However, cam-
eras at sequential positions remain to be adopted, since neighboring frames
to the first frame tend to be selected. When the motion of the objects is
small, outcrop points likely have their corresponding points between multi-
ple frames. The cameras at sequential positions are valid for reconstructing
smooth surfaces of the object.

In proposed researches, it is required that the positions of cameras are
expected to change sequentially. Contour generators, which are extracted
from silhouettes, are used to reconstruct 3D shapes in many researchers
(7,25, 11, 14, 35]. Whereas, with turntables, cameras at discrete and planar
positions only are realized [41]. Moreover, the cameras are located on the sur-
face of an upper hemisphere. In our proposed silhouette integration method
for multiple frames, cameras at locally-sequential and omnidirectional posi-
tions can be used to reconstruct 3D shapes.
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Figure 5.1: Positions of physical 12 cameras.
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Figure 5.2: Positions of 12 cameras in 50 frames.
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Figure 5.3: Positions of selected 12 cameras in 50 frames.
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Chapter 6

Future Works

Accuracy Limit of Shapes and Placement/Number of
Cameras

The relationship between the accuracy limit based on the sampling error
and the number of cameras are described in Chapter 3. For any objects,
the accuracy limit can be satisfied with a realistic number of cameras. For
instance, 242 cameras are required to acheive the accuracy for a triceratops
shape. However, the discussion was limited to the number of cameras only
for sample objects in this paper. It was not confirmed that what placement
of cameras could acheive the accuracy. The discussion on the placement and
number of cameras is one of our future works.

The complexity of shapes is related to the placement and number of
cameras. To describe the relation between the placement and number of
cameras and the accuracy, a definition of the complexity of shapes would be
required. Based on the definition, the placement and the number of cameras
are determined. In previous researches of 3D shape recognition, viewsphere
[55] or aspect graph have been proposed. To describe the relationship between
the placement and number of cameras and the accuracy, the concept of the
viewsphere might be useful. Consider the appearance of an object when the
object is set on the center of a unit sphere and the object is observed from
each point on the sphere surface. Based on the appearance difference, the
sphere surface is divided. The division of the surface can be considered to
represent a characteristic of the object. The complexity of the object can be
measured with the division of the surface. The most suitable placement could
be determined with the division. A problem is that the division is unknown
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before observing the object. To solve the problem, some assumption or some
condition will be required.

Texture Mapping for Reconstructed Models

We have discussed the accuracy of shapes in this paper. For presentation
of the reconstructed shapes, good appearance is also required. We have
not discussed the appearance enough. In the experimental results shown
in Figure 4.7 and Figure 4.9, the models are not good in appearance. The
problem is caused by luck of the resolution of texture images. The integration
method of textures is also not enough.

Recent consumer single-lens reflex cameras are available for the purpose.
The resolution obtained by them is more than 4000x3000. The cameras are
not capable for synchronous observation. To integrate images of moving ob-
jects in multiple frames, the synchronous observation is required. Dragonfly,
Flea, Scorpion and Grasshopper of PointGray Inc. can observe the objects
synchronously. For our current system, the Dragonflies which resolutions
are VGA or XGA are adopted. For the special cameras, the resolution is
seriously restricted.

We would use the consumer single-lens reflex cameras in conjunction with
the synchronous cameras. The shapes are obtained with the synchronous
cameras, and the fine textures are obtained with the consumer single-lens
reflex cameras. A problem is registration between shapes and textures.

Elimination of Rigid Object Assumption for Objects

We have discussed the shape reconstruction in multiple frames with assump-
tion that the object is rigid. In case when the object is observed in time
sequences, one of advantages would be the availability of motion description
for the object. In this paper, we have not considered the advantage. Our
proposed methods can be also applied to non-rigid objects with some exten-
sion. The extension will be done with continuity in space or time. Colors or
textures of the objects will be also utilized.

In our laboratory, researches on shape reconstruction for articulated ob-
jects have been done. They have been also reconstructed shapes from images
in multiple frames. Iiyama [16] reconstructed shapes of the articulated ob-
jects from silhouettes in multiple frames, His idea is based on segmentation
and integration for visual hulls. Funatomi [12] also reconstructed shapes
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from images in multiple frames. His target is to reconstruct shapes of hu-
man bodies. These researches have been discussed on the assumption that
the objects are articulated objects. The outcrop point extraction method
described in Chapter 3 and the silhouette extraction method described in
Chapter 2 can be applied to the articulated objects with no extension. With
some extension for segmentation, the frame evaluation method can be also
applied to the articulated objects. Focusing on human bodies, we would like
to extend our proposed methods.

Interfaces for 3D Shapes

We have discussed the accurate shape reconstruction in this paper. Interfaces
for the reconstructed object shapes, however, have rarely been proposed. The
object shapes are ordinarily displayed on a LCD display and manipulated
with a mouse.

Recently, signs [50] and digitalized cultural objects [15] are displayed
in response to the hand posture. These systems realize Augmented Reality
(AR). One of the major problems of these systems is the accuracy of the
estimated posture of the hand. When an accurate posture of the hand is
estimated, the augmentation of reality is well realized.

We have proven the matriz pattern glove. The matrix pattern has many
small square regions with different colors. Each region plays the role of
an independent marker. The matrix pattern can be considered as many
identifiable markers on the hand. The many markers enable us to acquire
the posture of the hand.
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