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Abstract—Planar markers enable an augmented reality (AR)
system to estimate the pose of objects from images containing
them. However, conventional markers are difficult to detect
in blurred or defocused images. We propose a new marker
and a new detection and identification method that is designed
to work under such conditions. The problem of conventional
markers is that their patterns consist of high-frequency com-
ponents such as sharp edges which are attenuated in blurred
or defocused images. Our marker consists of a single low-
frequency component. We call it a mono-spectrum marker.
The mono-spectrum marker can be detected in real time with
a GPU. In experiments, we confirm that the mono-spectrum
marker can be accurately detected in blurred and defocused
images in real time. Using these markers can increase the
performance and robustness of AR systems and other vision
applications that require detection or tracking of defined
markers.

Keywords-augmented reality; spectrum analysis; planar
marker;

I. INTRODUCTION

Estimating the relative position and orientation of a cam-
era from images is a fundamental requirement of augmented
reality (AR). The technique is used for table top interfaces
[9], registration for AR surgery systems [4] and many other
applications, such as estimating robot position and posture
or tracking of moving objects. A planar marker is an efficient
and effective tool for this estimation in many cases.
However, these applications tend to produce images that

are blurred due to camera motion or defocused due to vari-
ations in scene depth with a fixed focal distance, and these
artifacts cause problems with typical marker detection and
identification methods. We propose a new planar marker for
mobile cameras and moving objects which can be reliably
detected even in blurred or defocused images.
Conventional markers, such as those used in ARToolKit

[8] and QR Code, have patterns with high-frequency compo-
nents such as edges or corners. These attributes make their
markers hard to detect in blurred or defocused images, since

the high-frequency components are attenuated in blurred or
defocused images.
The problem can be solved with the marker having a

characteristic frequency spectrum. In this paper, we describe
the methods for making the new marker and detecting it in
blurred and defocused images. We call the marker a mono-
spectrum marker. The key idea is that the mono-spectrum
marker consists of only low-frequency components. The
frequency components pass through the low-pass filtering
of blurring and defocusing with a small loss. The markers
can be detected in real time with GPUs by analyzing their
frequency components. For optimal performance under both
static and dynamic conditions, the mono-spectrum marker
may be combined with current markers. Our approach has
a relatively high computational cost and thus requires GPU
computing. We believe the rapidly growing availability of
GPUs on mobile devices will make this approach to dealing
with blurred and defocused images feasible.

II. RELATED WORKS

The physical marker of ARToolKit [8] is a popular tool
for calibration, estimating the pose of the camera relative to
the scene. The marker consists of a black bold frame and
an internal binary pattern. It is detected in camera images,
and its position and orientation are estimated by locating the
four corners of the black frame. The internal pattern helps
to identify the marker. Other markers, such as the ARTag
[5], QR Code, and random dot markers [18] also consist of
binary edges, corners or dots of black and white.
These conventional markers are difficult to detect and

identify under conditions of image blur and defocusing,
which attenuates the high-frequency components from their
sharp edges and corners. Fiala [5] reported how much
Gaussian noise affects marker detection, but did not address
the effect of image blurring and defocusing.
Changes in marker appearance are considered in the

nested marker [17] and Bokode tag [11]. The nested marker
has a fractal structure so that it looks the same at long
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distance as it does at short distance, to provide distance
invariance. The Bokode tag consists of a light-emitting
component, which is best detected when the camerafs focal
length is set to infinity. These markers do not consider the
possible loss of high-frequency components in images.
Natural feature points like SIFT [10] and SURF [3] also

enable one to do calibration. The feature points are detected
not in planar markers but in general objects. The systems like
PTAM [9] or DTAM [12] for registration of real environment
and virtual objects are constructed based on the map of
natural features. The applications are different from those of
planar markers, since the feature points of the planar markers
are registered in a database in advance in order to estimate
the position and posture of target objects. Like our marker,
SIFT and SURF were designed with frequency changes in
mind. They provide frequency-shift-free tracking. However,
they do not consider the loss of high-frequency components
altogether, but rather just changes in frequency components
at least when the environmental map is reconstructed. The
Fourier tag [20] and fiducial image [14] use frequency
components for identification, but the components do not
contribute to robust detection or identification in blurred or
defocused images.
We also proposed a new AR marker in [1], but this marker

could not be correctly detected when viewed with a large
distortion caused by perspective projection when the plane
containing the marker is tilted with respect to the camera
plane. The estimated position of a marker in blurred or
defocused images was also less accurate than in images free
of blurring or defocusing; these problems are addressed in
the current paper by introduction of vertical and horizontal
filters and combined use of mono-spectrum marker with the
ARToolKit marker. The details are described in Section III.
Several template matching methods can deal with the blur-

ring and defocusing problem. ESM-Blur [15] creates blurred
templates in advance. Image resampling [6] addresses the
problem by sequentially updating templates. The practical
disadvantage of the template matching method is that only
a few kinds of markers can be used. Conventional markers
for AR support hundreds of markers or more, as does our
mono-spectrum marker.
The failure of marker detection can be mitigated by

interpolating the results of detection in frames [19]. The
method assumes that the detection failure occurs only in a
few frame, but this assumption is not valid when the images
are blurred or defocused.
The recovery of image quality is being studied actively

[2], [16]. Blurred or defocused images are degraded images,
and the aim is to restore such images so that they are
free of blurring and defocusing. The degradation is modeled
with a point spread function (PSF). The images are restored
by estimating the PSF and its inverse function. However,
restoration works well only when the blurring and defocus-
ing are small. That means images taken with actively moving

cameras cannot be effectively restored. Note that our marker
can be used together with the restoration methods.
Blurring and defocusing parameters are used for display-

ing virtual objects on the observed images [13]. The parame-
ters are extracted from the appearance changes of the special
pattern marker of ARToolKit under the assumption that the
blurring and defocusing are not large. The appearance of the
virtual object is adjusted with the extracted parameters. Our
marker can be used to estimate parameters from blurrier and
more defocused images, making the appearance adjustment
method more usable.

III. MONO-SPECTRUM MARKER DESIGN AND
DETECTION

A. Inhibition of High-Frequency Components by Image
Blurring and Defocusing
Images are blurred when the relative position between

the camera and an observed object changes during exposure.
Blur happens when either the camera or the object is moving.
Although a shorter exposure time can solve the problem in
some cases, it tends to produce underlit, and thus noisy,
images.
Figure 1(d) depicts the frequency spectrum of the ob-

served image shown in Figure 1(a). With the camera moving
horizontally, we obtain a blurred image Figure 1(b), and its
spectrum changes as in Figure 1(e). The spectrum loses the
high-frequency components along the x-axis.

(a) Original image (b) Blurred image (c) Defocused image

(d) Spectrum of (a) (e) Spectrum of (b) (f) Spectrum of (c)

Figure 1. Change of frequency spectrum due to blurring and defocusing.

A defocused image is shown in Figure 1(c); its spectrum
changes can be seen in Figure 1(f). The spectrum loses high-
frequency components in all directions.
Short exposure time, adequate lighting, stable cameras and

objects, and appropriate focal length would solve the above
problem; however, these measures are impractical in most
dynamic situations, especially in AR applications. Moving
cameras often result in blurred images. Moreover the focal
length is either fixed or adapts to one of many possibly
scene objects. Conventional markers are designed without
consideration of the circumstances where high-frequency
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components are lost. They are difficult to detect in blurred
or defocused images.

B. Design of the Mono-spectrum Marker

We present the design of our marker, which is designed to
be invariant to the blurring and defocusing artifacts described
above. The extraction method covers both detection and
identification of the marker in the observed images.
The mono-spectrum marker consists of the pattern shown

in Figure 2(a), a two-dimensional sinusoidal intensity pattern
with multiple colors. We designed the marker so that its
brightness changes at a single low frequency. This low-
frequency component is little-affected by blurring and de-
focusing. Hence, the regions in the observed images corre-
sponding to the markers also have a single low-frequency
component.

(a) Mono-spectrum (b) Combined (c) (b) in grayscale
marker marker

Color for corners     H

x

x

V

x

(d) Selected colors (e) Color in HSV color space

Figure 2. Design of the mono-spectrum marker.

The color value of each position of the mono-spectrum
marker is given in hue, saturation, and value (HSV) color
space. The values of H, S and V are determined as follows.
A special H value, yellow in our experiment, is reserved

for the corner dots of the marker. That is, colors excluding
yellow are used for dots that are not corners. The markers
are identified through the alignment of the colors of dots.
Individual colors should be distinguishable even when they
are slightly changed in the images. We empirically used
6 colors for making markers as shown in Figure 2(d).
More number of colors will not be identified in various
illumination conditions.
The value of S is set to the maximum value for each

position.
The value of V changes with the single low-frequency

component as shown in Figure 2(e). The regions of the
markers are distinguished from other regions by using the
characteristic frequency spectrum. Let us denote by r the
distance from the center of region, and L the width and
height of a square region. The value of V ∈ [0,1] is defined
as follows:

V =

{
(1−α)

(
cos 2πrL

)
+α,

(
r ≤ L

2
)

0, (otherwise) (1)

where α is the offset of the brightness. By adjusting α , we
can give the center of each dot a brightness which can retain
in both the printed paper and captured image. An appropriate
value for α can be found by checking whether the dots are
clearly perceivable in the printed paper, like the one shown in
Figure 2(a). We set α = 0.1 in experiments. Image blurring
and defocusing can be assumed to be low-pass filters with a
certain cutoff frequency value. The frequency components
of the center of the regions should be smaller than the
cutoff frequency value. If they are filtered out by blurring
or defocusing, the marker detection will fail.

C. Extraction of Mono-spectrum Marker
Figure 3 shows an overview of marker detection and

identification. We remove the zero frequency components
(Step 1) and band-pass filtering of each region (Step 2) in the
observed images. The corner dots are detected by referring
to the colors of the regions (Step 3). Valid corner dots are
selected by a segmentation of the original image. The mono-
spectrum markers are then detected and identified (Step 4).
We describe each step in detail below.

Step1. Remove Zero Frequency Component
Let us denote the signal of mono-spectrum markers as

f (x) and the ones of other objects as g(x).
Geometric transform together with a perspective projec-

tion changes not only the frequency but also the amplitude
of the signal. The illumination also adds an offset to the
signal. Therefore the signal of the observed marker usually
has a wider range in the frequency domain as shown in the
left column of Figure 3. In the regions corresponding to the
mono-spectrum marker M and the ones of the other regions
N, the following signals of different features are observed
since the signals are projected on the images.

M : f̃ (x)+ c, (2)
N : g̃(x)+ c. (3)

f̃ and g̃ means that f and g are transformed with a
perspective projection. c is the DC (Direct Current) offset.
In Step 1, we remove the DC components from the

original signals. The high pass filter b0(x) that cuts off only
the DC component is convolved with the observed signals.

M : ( f̃ (x)+ c)∗b0(x)≈ f̃ (x), (4)
N : (g̃(x)+ c)∗b0(x). (5)

Since f (x) does not have a DC component, f̃ (x), which
has a transformed single frequency and a little wider range,
should not have it as well. Thus, f̃ (x) passes through the
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1. Remove direct current component 

Non-DC signal

Mono-spectrum marker 

and it spectrum

Marker regions

Other regions

Marker regions

Other regions

Divided segments 

in binary image

Filtered with H and S 

color values

3. Corner detection

Marker detection in 

divided segments

Detect points with 

local maxima

Observed image

Regions passing 

through a particular 

filter with small loss

3. Corner detection

4. Detection and identification

Vertical 1D 

Band-pass filters

2. Band-pass filtering

Horizontal  1D 

Band-pass filters

Figure 3. Extraction of mono-spectrum marker from observed images.

filter b0(x) in M. On the other hand, g(x) would have a DC
component, and g̃(x) should not pass through the filter b0(x)
in N. The GPU convolves the band-pass filters in the space
domain in real-time as described in Algorithm 1.

Algorithm 1 Remove Zero Frequency Component
1: x= threadid.x, y= threadid.y, sum= 0.0.
2: for (xw,yw) ∈ f ilterWindow0 do
3: sum= sum+ s(x+ xw,y+ yw)∗b0(xw,yw).
4: end for
5: s0(x,y) = sum.

Step 2. Band-pass Filtering
In the next step, all small regions are band-pass filtered.
Although f (x) is known in the original marker image,

f̃ (x) is unknown in the observed image. f̃ (x) no longer
appears to be mono-spectrum in the observed image because
of perspective or the inclination of marker plane. In addition,
neither the location nor the range in the frequency domain
is known for the marker in the observed image. To solve
the problem, we use multiple vertical and horizontal band-
pass filters that have different pass bands. We still can expect
that most frequency components are located within a certain
range of the transformed single frequency at least along the
vertical and horizontal lines. There should be one or more
vertical and horizontal filters that pass the signal with a small
loss.

Denoting bvi (i ∈ (1, · · · ,nv) = Nv) and bhj (i ∈
(1, · · · ,nh) =Nh) as vertical and horizontal band-pass filters,
and s(x) as the observed image; the following region R is
calculated as the candidate region of the mono-spectrum
marker.

Rp =
{
(x,y)

∣∣(s∗b0)(x,y)> thp } ,
Rv ={

(x,y)
∣∣∣∣ ∃i ∈Nv,

∣∣∣∣
∣∣∣∣ (s∗b0 ∗bvi )(x,y)− (s∗b0)(x,y)

(s∗b0)(x,y)
∣∣∣∣
∣∣∣∣< thr

}
,

Rh ={
(x,y)

∣∣∣∣∣ ∃ j ∈Nh,

∣∣∣∣∣
∣∣∣∣∣ (s∗b0 ∗b

h
j)(x,y)− (s∗b0)(x,y)
(s∗b0)(x,y)

∣∣∣∣∣
∣∣∣∣∣< thr

}
,

R= Rp ∩Rv ∩Rh,
(6)

where thp is the threshold of absolute brightness and thr
is the threshold of relative remaining power. In experiment,
thp was set to 0.05 and thr was set to 0.20. The thresholds
should be appropriately defined depending on the average
brightness of captured images.
The band-pass filters bvi and bhj are designed in the

frequency domain. The shape of each filter is determined
by a particular band to be passed. An inverse Fourier
transformation generates bvi and bhj in the space domain. The
filter passing the signal with period of N1 pixels to N2 pixels
in the space domain is designed such that values are 1 for
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1/N2 to 1/N1 in the frequency domain.
The pseudo-code for detecting the candidate regions of

the mono-spectrum markers is shown in Algorithm 2.

Algorithm 2 Detect marker candidate regions
1: candidateRegion= φ .
2: x= threadid.x,y= threadid.y.
3: if s0(x,y)> thp then
4: for i ∈N do
5: sumv = 0.0.
6: for xw ∈ f ilterWindowvi do
7: sumv = sumv+ s0(x+ xw,y)∗bvi (xw).
8: end for
9: if ||sumv− s0(x,y)||/s0(x,y)< thr then
10: sumh = 0.0.
11: for yw ∈ f ilterWindowj do
12: sumh = sumh+ s0(x,y+ yw)∗bhj(yw).
13: end for
14: if ||sumh− s0(x,y)||/s0(x,y)< thr then
15: candidateRegion= candidateRegion∪ (x,y).
16: end if
17: end if
18: end for
19: end if

Step 3. Corner Detection
The corner dots of the mono-spectrum markers have the

selected H values and large S values. The corner dots are
detected by searching for these values in the detected marker
regions in Step 2. The centers of the dots have local maxima.
A window with size corresponding to the filter frequency is
set around each pixel of the marker regions. If a pixel has
the maximum value in its window, the pixel is a candidate
of the corner dots.
We avoid false detections of corner dots by first smoothing

the observed images to remove the noise of the observed
images. The set of the candidate corner dots pixels can be
also calculated in real-time with the use of GPU.

Step 4. Detection and Identification
Valid corner dots are selected from candidates of detected

corner dots in this step. The binarized image of the original
image is divided into segments. The number and positions
of candidates are checked in each segment. If three or fewer
candidates are detected in a segment, these candidates are
removed. The ARToolKit method removes falsely detected
corners in a similar manner. The method can detect multiple
markers in an observed image.
The centers of the four corner dots give a homography

which projects from the marker coordinates to the coordi-
nates of the observed image. The position and posture of the
marker are represented with the homography. The pattern of
the marker is also recognized with the homography. The

marker in Figure 2(a) has 3× 3 dots. The H values of the
dots are put on a lattice that is defined by the four corners.
The H values represent the marker pattern. The marker in
the image is identified by matching it with stored patterns
of markers.
After the identification, the centers of the four corners

are refined by parabola fitting [7]. The brightness peaks of
parabolas define final positions of the corner dots.

D. Combined Use with ARToolKit
The position of the marker in images is defined by

the pixels having the local peak of V . Since the local
peaks are detected from one low-frequency component, the
detection is less accurate than the detection from edges or
corners with high-frequency components. For instance, the
position of an ARToolKit marker is defined by the corner
positions. That means ARToolKit’s accuracy is superior to
our mono-spectrum marker when the images are neither
blurred nor defocused. Detecting the peaks from a low-
frequency component tends to be affected by image flicker.
When both marker and camera are stable, ARToolKit gives
better position estimation.
Accordingly, we proceeded to combine our marker with

the ARToolKit marker. An example of such a combination
marker is shown in Figure 2(b). The ARToolKit marker
possesses a black bold frame, and each marker has a
unique internal pattern. The marker shown in Figure 2(b)
is generated from the one shown in Figure 2(a) with a black
bold frame. Detection and identification of markers are done
using a binary image. The marker image shown in Figure
2(b) is transformed into the grayscale one shown in Figure
2(c). When the image is binarized, it becomes an ARToolKit
marker.

Detected corners

Grayscale patch

Binary patch

Ideal patch

Binarization

Copy min/max

values

Confidence value of 

corner detection

Figure 4. Confidence value of corner detection.

The value indicates the amount of blurring or defocusing.
A binarized image is used for corner detection in ARToolKit.
When no blurring and defocusing are observed, the corners
in the original images should be same to the ideal image in
Figure 4. The ideal image is generated by binarised region
painted with minmum and maximum color values in the
grayscale patch of original image. The confidence value is
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estimated by summing errors between the grayscale patch
and ideal patch and normalizing the sum.
The threshold of confidence value was set to 0.90 in

practical use. If the value is smaller than the threshold, we
use the estimated position by ARToolKit, and if not, we
use the position of the mono-spectrum marker. Note that
we did not apply the confidence value in the experiment in
the next section, since we aim to show the advantages of
mono-spectrum marker from ARToolKit marker.

IV. EXPERIMENTAL RESULTS

In order to assess the viability and performance of the
new mono-spectrum marker, we ran two experiments: one
with artificially blurred and defocused images (so we could
control the magnitude of the artifacts), and one with real-
world blurred and defocused imagery.
A marker was observed with a USB camera (Qcam S7500

of Logicool Corporation) whose resolution was 640× 480
pixels and frame rate was 15 fps. We use the auto-white-
balance function of the camera. The marker was detected us-
ing a mono-spectrum method as well as ARToolKit method
running on a desktop PC (OS: Windows XP, CPU: Intel Core
2 Duo 2.66GHz, GPU: NVidia GeForce GTX295 896MB).
Our program was implemented with CUDA 4.0. Two pairs
of vertical and horizontal band-pass filters were used for
detecting the mono-spectrum marker. One pair of the filters
passed a signal with a period of 7 to 15 pixels, and the other
passed a signal with 15 to 31 pixels. Thus, a 3×3 marker
should be observed as 21 to 93 pixels in width and height.
In the first experiment, images s(t) (t = 0, · · · ,510) were

captured with a moving camera. The movement of the
camera was small so that the images would not be blurred.
The focal length of the camera was appropriately set, so the
images would not be defocused.
Next, the images were artificially blurred and defocused in

the following way. Blurred images sB(x, t) were generated by
summing the weighted values in H(−t)G(0,σ2t ) of pixels of
the neighboring frames. H(−t) is the Heaviside function and
G(0,σ2t ) is a Gaussian function with variances σt defining
the degree of blurring.
The defocused images sD(x, t) were generated by sum-

ming the weighted values in G(0,σ2x ) of pixels of the
neighboring pixels with variances σx defining the degree of
defocusing.
The results of marker detection for the blurred images

and the defocused images are shown in Figure 5. The top
images in Figure 5 are the ones of 90th frame in the movie.
Figures 5(b) and 5(c) are examples of blurred images and
Figures 5(d) and 5(e) are defocused ones. ARToolKit could
not detect markers in blurred images with σt = 7.0 and
defocused images with σx = 7.0 of Figure 5. ARToolKit
markers tend to be detected on farther positions in defocused
images.

Figure 6(a) shows the average error of the extracted four
corners from the blurred images in case that the marker
was extracted using ARToolKit. We assumed that the correct
position of the corners of the marker was the one estimated
with ARToolKit from the original observed images without
blurring or defocusing. The error was calculated for the
estimated position from the blurred or defocused images.
The error is infinity when no marker is detected.
Figure 6(a) shows that the ARToolKit marker and the

mono-spectrum marker could be detected the all frames.
Since blurring makes it difficult to detect edges perpen-
dicular to the moving direction of the camera, ARToolKit
gave a larger error. The error of the mono-spectrum marker
was not negligible, although it was smaller than that of
ARToolKit. The combined use of the mono-spectrum marker
and the ARToolKit marker can accurately extract the marker.
When more blurred as shown in Figure 6(b), the markers
could not be detected in several frames since the low-
frequency components of the mono-spectrum marker were
severely attenuated with significant blurring. The average
and variance of the error are listed in Figure 7(a). Note that
the frames of ARToolKit were not used in this case.
Figure 6(c) shows the errors in defocused images. Al-

though the ARToolKit marker could be detected in all
frames, the error was large on average. The mono-spectrum
marker was extracted in all frames, and the error was
smaller than the error of ARToolKit. Image defocusing
makes the ARToolKit marker appear smaller and results
in a larger error. The error of the mono-spectrum marker
is the same level as in the case of image blurring. When
more defocused as shown in Figure 6(d), the ARToolKit
marker was not detected in several frames, since the low-
frequency components were severely attenuated as well as
the case of blurring. The optimal solution is to combine
mono-spectrum markers and ARToolKit markers, as they
have complementary strengths.
Processing times are listed in Figure 7(b). For 640×480

pixel images, 15 or more frames were processed per second,
so the operation was almost real-time. We used two pairs of
vertical and horizontal band-pass filters for the signal with a
period of 7 to 15 pixels and the ones with a period of 15 to 31
pixels in the above experiments. More filters gives a wider
depth range of detection, but also uses more processing time.
Consequently, we examined the change in processing time
by varying the number of filters. Since a bandpass filter with
a period of 31 to 63 pixels was employed as the third one, the
3× 3 marker can be observed as 189× 189 pixels. Figure
7(b) shows the relationship between the number of pairs
of filters and the processing time. For the image resolution
of 640× 480 pixels, the processing time was 5.3 ms per
band-pass filter on average. For 320×240 pixel images, the
processing time was 1.5 ms per band-pass filter on average.
More experimental results are shown in the supplemental

movie. The movie shows the marker detection in various
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illumination scenes and various scales. The images are
captured by a moving camera. The markers could be robustly
detected even in blurred or defocused images.
We also confirmed the validity of combined use with

ARToolKit in the movie. We captured real blurred and
defocused images and evaluated the detection rate as an AR-
ToolKit marker and mono-spectrum marker. In the blurred
images, ARToolKit marker was missed in 22 images out of
500, and mono-spectrum marker was correctly detected in all
images. In the defocused images, both of ARToolKit marker
and mono-spectrum marker were detected in all images,
although the position of the ARToolKit marker was farther
than the real position.

V. CONCLUSIONS
We proposed a mono-spectrum marker that can be ac-

curately extracted even from blurred or defocused images.
The marker has only a low-frequency component. Band-pass
filters that pass different frequency components are used for
extracting the mono-spectrum marker. In an experiment, the
marker was accurately extracted from blurred or defocused
images in real-time.
Processing without GPUs is also a future topic. GPUs

were used for band-pass filtering. They can filter in parallel
all pixels. ARToolKit has an advantage in processing time
and required PC specs. The need to use GPUs would restrict
the applications of the mono-spectrum marker. The disad-
vantage could be overcome with digital signal processors
(DSPs). DSPs are used in mobile devices for processing
voice signals, and filtering voice signals is a major function.
Such a function could be used for extracting the mono-
spectrum marker. On the other hand, GPUs are also mounted
on into recent mobile devices. They would be useful for
extracting mono-spectrum markers.
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(a) Original image (b) σt = 4.0 (c) σt = 7.0 (d) σx = 4.0 (e) σx = 7.0

Figure 5. Results of marker detection on blurred and defocused images. (Top-left) Original image of 90th frame. (Top) Blurred ((b) and (c)) or defocused
((d) and (e)) images. (Middle) Teapots placed on the marker positions detected as an ARToolKit marker. The marker was not detected when images were
blurred and defocused, and detected on farther positions when images were defocused. (Bottom) Teapots placed on the marker positions detected as a
mono-spectrum marker. The marker positions were correctly estimated.
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Figure 6. Results of marker detection. (Top) Average errors of four corner positions of detected markers as ARToolKit markers. (Bottom) Errors as
mono-spectrum marker. The x-axis is the number of frames, and the y-axis is the error.
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(a) Errors and processing times (ms/frame) of marker detection. (b) Processing time versus number of band-pass filters.
(*: Not including frames in which markers could not be detected.)

Figure 7. Errors and processing time.
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