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Abstract Planar markers enable an augmented reality
(AR) system to estimate the pose of objects from im-

ages containing them. However, conventional markers
are difficult to detect in blurred or defocused images.
We propose a new marker and a new detection and

identification method that is designed to work under
such conditions. The problem of conventional markers
is that their patterns consist of high-frequency com-

ponents such as sharp edges which are attenuated in
blurred or defocused images. Our marker consists of
a single low-frequency component. We call it a mono-

spectrum marker. The mono-spectrum marker can be
detected in real time with a GPU. In experiments, we
confirm that the mono-spectrum marker can be accu-

rately detected in blurred and defocused images in real
time. Using these markers can increase the performance
and robustness of AR systems and other vision applica-
tions that require detection or tracking of defined mark-

ers.

Keywords Augmented reality · Spectrum analysis ·
Planar marker

1 Introduction

Estimating the relative position and orientation of a
camera from images is a fundamental requirement of

augmented reality (AR). The technique is used for ta-
ble top interfaces [10], registration for AR surgery sys-
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tems [4] and many other applications, such as estimat-
ing robot position and posture or tracking of moving

objects. A planar marker is an efficient and effective
tool for this estimation in many cases.

However, these applications tend to produce images
that are blurred due to camera motion or defocused due
to variations in scene depth with a fixed focal distance,

and these artifacts cause problems with typical marker
detection and identification methods. We propose a new
planar marker for mobile cameras and moving objects

which can be reliably detected even in blurred or defo-
cused images.

Conventional markers, such as those used in AR-
ToolKit [9] and QR Code, have patterns with high-
frequency components such as edges or corners. These

attributes make their markers hard to detect in blurred
or defocused images, which have attenuated high-frequency
components.

The problem can be solved with the marker hav-
ing a characteristic frequency spectrum. In this paper,

we describe the methods for making the new marker
and detecting it in blurred and defocused images. We
call the marker a mono-spectrum marker. The key idea

is that the mono-spectrum marker consists of only low-
frequency components. The frequency components pass
through the low-pass filtering of blurring and defocus-

ing with a small loss. The markers can be detected in
real time with GPUs by analyzing their frequency com-
ponents. Our approach has a relatively high computa-

tional cost and thus requires GPU computing. We be-
lieve the rapidly growing availability of GPUs on mobile
devices will make this approach to dealing with blurred

and defocused images feasible.
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2 Related Works

The physical marker of ARToolKit [9] is a popular tool
for calibration, estimating the pose of the camera rela-
tive to the scene. The marker consists of a black bold

frame and an internal binary pattern. It is detected in
camera images, and its position and orientation are es-
timated by locating the four corners of the black frame.

The internal pattern helps to identify the marker. Other
markers, such as the ARTag [6], QR Code, and random
dot markers [19] also consist of binary edges, corners or

dots of black and white.

These conventional markers are difficult to detect

and identify under conditions of image blur and de-
focusing, which attenuates the high-frequency compo-
nents from their sharp edges and corners. Fiala [6] re-

ported how much Gaussian noise affects marker detec-
tion, but did not address the effect of image blurring
and defocusing.

Changes in marker appearance are considered in the

nested marker [18] and Bokode tag [12]. The nested
marker has a fractal structure so that it looks the same
at long distance as it does at short distance, to pro-

vide distance invariance. The Bokode tag consists of a
light-emitting component, which is best detected when
the camera’s focal length is set to infinity. These mark-

ers do not consider the possible loss of high-frequency
components in images.

Natural feature points like SIFT [11] and SURF [3]
also enable one to do calibration. The feature points are

detected not in planar markers but in general objects.
Systems like PTAM [10] or DTAM [13] for registration
of real environment and virtual objects are constructed

based on the map of natural features. The applications
are different from those of planar markers, since the
feature points of the planar markers are registered in a

database in advance in order to estimate the position
and posture of target objects. Like our marker, SIFT
and SURF were designed with frequency changes in

mind. They provide frequency-shift-free tracking. How-
ever, they do not consider the loss of high-frequency
components altogether, but rather just changes in fre-

quency components at least when the environmental
map is reconstructed. The Fourier tag [21] and fiducial
image [15] use frequency components for identification,

but the components do not contribute to robust detec-
tion or identification in blurred or defocused images.

We also proposed a new AR marker in [1], but this
marker could not be correctly detected when viewed

with a large distortion caused by perspective projection
when the plane containing the marker is tilted with
respect to the camera plane. The problem is addressed

in the current paper by the introduction of vertical and

horizontal filters. The details are described in Section

3.
Several template matching methods can deal with

the blurring and defocusing problem. ESM-Blur [16]

creates blurred templates in advance. Image resampling
[7] addresses the problem by sequentially updating tem-
plates. The practical disadvantage of the template match-

ing method is that only a few kinds of markers can be
used. Conventional markers for AR support hundreds
of markers or more, as does our mono-spectrum marker.

The failure of marker detection can be mitigated by
interpolating the results of detection in frames [20]. The
method assumes that the detection failure occurs only

in a few frames, but this assumption is not valid when
the images are blurred or defocused.

The recovery of image quality is being studied ac-

tively [2,17]. Blurred or defocused images are degraded
images, and the aim is to restore such images so that
they are free of blurring and defocusing. The degrada-
tion is modeled with a point spread function (PSF).

The images are restored by estimating the PSF and
its inverse function. However, restoration works well
only when the blurring and defocusing are small. That

means images taken with actively moving cameras can-
not be effectively restored. Note that our marker can
be used together with the restoration methods.

Blurring and defocusing parameters are used for dis-
playing virtual objects on the observed images [14]. The
parameters are extracted from the appearance changes

of the special pattern marker of ARToolKit under the
assumption that the blurring and defocusing are not
large. The appearance of the virtual object is adjusted

with the extracted parameters. Our marker can be used
to estimate parameters from blurrier and more defo-
cused images, making the appearance adjustment method

more usable.

3 Mono-spectrum Marker Design and
Detection

3.1 Inhibition of High-Frequency Components by
Image Blurring and Defocusing

Images are blurred when the relative position between
the camera and an observed object changes during ex-
posure. Blur happens when either the camera or the ob-

ject is moving. Although a shorter exposure time can
solve the problem in some cases, it tends to produce
underlit, and thus noisy, images.

Figure 1(b) depicts the frequency spectrum of the
observed image shown in Figure 1(a). With the camera
moving horizontally, we obtain a blurred image Figure

1(c), and its spectrum changes as in Figure 1(d). The
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(a) Original image (b) Spectrum of (a)

(c) Blurred image (d) Spectrum of (c)

(e) Defocused image (f) Spectrum of (e)

Fig. 1 Change of frequency spectrum due to blurring and
defocusing.

spectrum loses the high-frequency components along
the x-axis.

Images are defocused when the focal length of the
camera is incorrectly set for the current distance be-
tween the camera and the object. The degree of defocus-

ing depends on the difference between the focal distance
and the distance between the camera and the object.
Short exposure time, adequate lighting, stable cameras

and objects, and appropriate focal length would solve
the above problem; however, these measures are im-
practical in most dynamic situations, especially in AR

applications. Moving cameras often result in blurred
images. Moreover, the focal length is either fixed or
adapts to one of many possibly scene objects.

A defocused image is shown in Figure 1(e); its spec-
trum changes can be seen in Figure 1(f). The spectrum

of a defocused image loses high-frequency components
in all directions.

Conventional markers are designed without consid-
eration of the circumstances where high-frequency com-
ponents are lost. They are difficult to detect in blurred

or defocused images.

3.2 Design of the Mono-spectrum Marker

We present the design of our marker, which is designed

to be invariant to the blurring and defocusing artifacts
described above. The extraction method covers both de-
tection and identification of the marker in the observed

images.

The mono-spectrum marker consists of the pattern

shown in Figure 2, a two-dimensional sinusoidal inten-
sity pattern with multiple colors that looks like a pat-
tern of blurry dots to the observer. We designed the

marker so that its brightness changes at a single low fre-
quency. This low-frequency component is little-affected
by blurring and defocusing. Hence, the regions in the

observed images corresponding to the markers also have
a single low-frequency component.

H

S

V

Fig. 2 Design of the mono-spectrum marker.

The color value of each position of the mono-spectrum
marker is given in hue, saturation, and value (HSV)
color space. The values of H, S and V are determined

as follows.
A special H value, yellow in our experiment, is re-

served for the corner dots of the marker. That is, colors

excluding yellow are used for dots that are not corners.
The markers are identified through the alignment of the
colors of dots. Individual colors should be distinguish-

able even when they are slightly changed in the im-
ages. We empirically used 6 colors for making markers.
A larger number of colors will not be distinguishable in

various illumination conditions.
The value of S is set to the maximum value for each

position.

The value of V changes with the single low-frequency
component. The regions of the markers are distinguished
from other regions by using the characteristic frequency

spectrum. Let us denote by r the distance from the cen-
ter of region, and L the width and height of a square
region. The value of V ∈ [0, 1] is defined as follows:

V =

{
(1− α)

(
cos 2πr

L

)
+ α,

(
r ≤ L

2

)
0, (otherwise)

(1)

where α is the offset of the brightness. By adjusting α,
we can give the center of each dot a brightness which

can retain in both the printed paper and captured im-
age. An appropriate value for α can be found by check-
ing whether the dots are clearly perceivable in the printed

paper, like the one shown in Figure 2. We set α = 0.1
in our experiments. Image blurring and defocusing can
be assumed to be low-pass filters with a certain cut-

off frequency value. The frequency components of the
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center of the regions should be smaller than the cutoff

frequency value. If they are filtered out by blurring or
defocusing, the marker detection will fail.

3.3 Number of Possible Marker Patterns

Corner dots have a reserved color. Figure 3 shows ro-
tationally identical dots. The dots indicated with the

same shape are rotationally identical for the rotation
angles of 0, 90, 180, and 270 degrees. A group of same
color dots matches another group of dots when the

marker is rotated. A 4 × 4 marker has 4 groups of 3
dots. We denote by d the number of dots on an edge. In
case of the 4×4 marker, d is 4. According to the Cauchy-

Froebenius theorem [5], when d is odd, a marker has 4
groups of u1 = (d− 1)(d+ 1)/4− 1 dots together with
an independent dot at the center of marker. When d is

even, a marker has 4 groups of u2 = (d/2)2 − 1 dots.
The number of patterns that m colors are assigned to
the groups of dots is calculated as the following.

m
(

m4u1+m2u1+2mu1

4

)
, (If d is odd)(

m4u2+m2u2+2mu2

4

)
. (If d is even)

(2)

(a) 4x4 dot marker (b) 5x5 dot marker

Fig. 3 Groups of dots that are rotationally identical.

The number of patterns is 825 when m = 5 and

d = 3, and 544, 207, 356 when m = 6 and d = 4. m and
d should be set in consideration of the size of markers,
robustness of marker extraction, and required number

of patterns.

3.4 Extraction of Mono-spectrum Marker

Figure 4 shows an overview of marker detection and
identification. We remove the zero frequency compo-
nents (Step 1) and band-pass filtering of each region

(Step 2) in the observed images. The corner dots are
detected by referring to the colors of the regions (Step
3). Valid corner dots are selected by a segmentation

of the original image. The mono-spectrum markers are
then detected and identified (Step 4). We describe each
step in detail below.

Step1. Remove Zero Frequency Component

Let us denote the signal of mono-spectrum markers as
f(x) and that of other objects as g(x).

Geometric transform together with a perspective
projection changes not only the frequency but also the
amplitude of the signal. The illumination also adds an

offset to the signal. Therefore the signal of the observed
marker usually has a wider range in the frequency do-
main as shown in the left column of Figure 4. In the

regions corresponding to the mono-spectrum marker M
and the ones of the other regions N , the following sig-
nals of different features are observed since the signals

are projected on the images:

M : f̃(x) + c, (3)

N : g̃(x) + c. (4)

f̃ and g̃ means that f and g are transformed with a
perspective projection. c is the DC (Direct Current)

offset.

In Step 1, we remove the DC components from the

original signals. The high pass filter b0(x) that cuts off
only the DC component is convolved with the observed
signals.

M : (f̃(x) + c) ∗ b0(x) ≈ f̃(x), (5)

N : (g̃(x) + c) ∗ b0(x). (6)

Since f(x) originally consists of a single frequency,
f̃(x) should have a transformed single frequency and a
little wider range. Thus, f̃(x) passes through the filter

b0(x) in M . On the other hand, g(x) would consist of
various frequency components, and g̃(x) should not pass
through the filter b0(x) in N . The GPU convolves the

band-pass filters in the space domain in real-time as
described in Algorithm 1.

Algorithm 1 Remove Zero Frequency Component
1: x = threadid.x, y = threadid.y, sum = 0.0.
2: for (xw, yw) ∈ filterWindow0 do
3: sum = sum+ s(x+ xw, y + yw) ∗ b0(xw, yw).
4: end for
5: s0(x, y) = sum.

Step 2. Band-pass Filtering

In the next step, all small regions are band-pass filtered.

Although f(x) is known in the original marker im-
age, f̃(x) is unknown in the observed image. f̃(x) no

longer appears to be mono-spectrum in the observed
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Regions passing 

through a particular 

filter with small loss

4. Detection and identification

3. Corner detection

2. Band-pass filtering

Non-DC signal

Mono-spectrum marker 

and it spectrum

Observed image

Marker regions

Other regions
Vertical 1D 

Band-pass filters

Marker regions

Other regions

Divided segments 

in binary image

Filtered with H and S 

color values

Detect points with 

local maxima

Marker detection in 

divided segments

Horizontal  1D 

Band-pass filters

1. Remove direct current component

Fig. 4 Extraction of mono-spectrum marker from observed images.

image because of perspective or the inclination of marker
plane. In addition, neither the location nor the range
in the frequency domain is known for the marker in the

observed image. To solve the problem, we use multi-
ple vertical and horizontal band-pass filters that have
different pass bands. We still can expect that most fre-

quency components are located within a certain range
of the transformed single frequency at least along the
vertical and horizontal lines. There should be one or

more vertical and horizontal filters that pass the signal
with a small loss.

Denoting bvi (i ∈ (1, · · · , nv) = Nv) and bhj (i ∈
(1, · · · , nh) = Nh) as vertical and horizontal band-pass
filters, and s(x) as the observed image; the following
region R is calculated as the candidate region of the

mono-spectrum marker.

diffv
i (x, y) =

∣∣∣∣∣∣∣∣ (s ∗ b0 ∗ bvi )(x, y)− (s ∗ b0)(x, y)
(s ∗ b0)(x, y)

∣∣∣∣∣∣∣∣ ,
diffh

i (x, y) =

∣∣∣∣∣
∣∣∣∣∣ (s ∗ b0 ∗ bhj )(x, y)− (s ∗ b0)(x, y)

(s ∗ b0)(x, y)

∣∣∣∣∣
∣∣∣∣∣ ,

Rp = {(x, y) |(s ∗ b0)(x, y) > thp } ,
Rv = {(x, y) | ∃i ∈ Nv, diff

v
i (x, y) < thr } ,

Rh =
{
(x, y)

∣∣ ∃j ∈ Nh, diff
h
i (x, y) < thr

}
,

R = Rp ∩Rv ∩Rh, (7)

where thp is the threshold of absolute brightness and

thr is the threshold of relative remaining power. The

thresholds should be appropriately defined depending
on the average brightness of captured images. Auto-
white-balance function helps to define the appropriate

values of thp and thr, and the function is generally im-
plemented in recent consumer cameras. All the exper-
imental results in Section 4 are given with the same

parameters, which thp was set to 0.05 and thr was set
to 0.20.

The band-pass filters bvi and bhj are designed in the

frequency domain. The shape of each filter is deter-
mined by a particular band to be passed. An inverse
Fourier transformation generates bvi and bhj in the space

domain. The filter passing the signal with period of N1

pixels to N2 pixels in the space domain is designed such
that values are 1 for 1/N2 to 1/N1 in the frequency do-

main.
The pseudo-code for detecting the candidate regions

of the mono-spectrum markers is shown in Algorithm

2.

Step 3. Corner Detection

The corner dots of the mono-spectrum markers have

the selected H values and large S values. The corner
dots are detected by searching for these values in the de-
tected marker regions in Step 2. The centers of the dots

have local maxima. A window with size corresponding
to the filter frequency is set around each pixel of the
marker regions. If a pixel has the maximum value in its

window, the pixel is a candidate of the corner dots.
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Algorithm 2 Detect marker candidate regions
1: candidateRegion = ϕ.
2: x = threadid.x, y = threadid.y.
3: if s0(x, y) > thp then
4: for i ∈ N do
5: sumv = 0.0.
6: for xw ∈ filterWindowv

i do
7: sumv = sumv + s0(x+ xw, y) ∗ bvi (xw).
8: end for
9: if ||sumv − s0(x, y)||/s0(x, y) < thr then
10: sumh = 0.0.
11: for yw ∈ filterWindowj do
12: sumh = sumh + s0(x, y + yw) ∗ bhj (yw).
13: end for
14: if ||sumh − s0(x, y)||/s0(x, y) < thr then
15: candidateRegion = candidateRegion ∪ (x, y).
16: end if
17: end if
18: end for
19: end if

We avoid false detections of corner dots by first
smoothing the observed images to remove the noise of
the observed images. The set of the candidate corner

dots pixels can be also calculated in real-time with the
use of the GPU.

Step 4. Detection and Identification

Valid corner dots are selected from candidates of de-
tected corner dots in this step. The binarized image of

the original image is divided into segments. The num-
ber and positions of candidates are checked in each seg-
ment. If three or fewer candidates are detected in a

segment, these candidates are removed. False positive
candidate corners may be extracted especially from a
cluttered background, counting four corners in a bina-

rized segment guarantees that only the true corners of
mono-spectrum markers are detected. The ARToolKit
method removes falsely detected corners in a similar

manner. The method can detect multiple markers in
an observed image.

The centers of the four corner dots give a homogra-

phy which projects from the marker coordinates to the
coordinates of the observed image. The position and
posture of the marker are represented with the homog-

raphy. The pattern of the marker is also recognized with
the homography. The marker in Figure 2 has 3×3 dots.
The H values of the dots are put on a lattice that is

defined by the four corners. The H values represent the
marker pattern. The marker in the image is identified
by matching it with stored patterns of markers.

After the identification, the centers of the four cor-
ners are refined by parabola fitting [8]. The brightness
peaks of parabolas define final positions of the corner

dots.

4 Experimental Results

In order to assess the viability and performance of the

new mono-spectrum marker, we ran two experiments:
one with artificially blurred and defocused images (so
we could control the magnitude of the artifacts), and

one with real-world blurred and defocused imagery.

A marker was observed with a USB camera (Qcam

S7500 of Logicool Corporation) whose resolution was
640×480 pixels and frame rate was 15 fps. We used the
auto-white-balance function of the camera. The marker

was detected using our mono-spectrum method as well
as ARToolKit method running on a desktop PC (OS:
Windows XP, CPU: Intel Core 2 Duo 2.66GHz, GPU:

NVidia GeForce GTX295 896MB). Our program was
implemented with CUDA 4.0. Two pairs of vertical and
horizontal band-pass filters were used for detecting the

mono-spectrum marker. One pair of the filters passed a
signal with a period of 7 to 15 pixels, and the other
passed a signal with 15 to 31 pixels. Thus, a 3 × 3

marker should be observed as 21 to 93 pixels in width
and height.

In the first experiment, images s(t) (t = 0, · · · , 510)
were captured with a moving camera. The movement

of the camera was small so that the images would not
be blurred. The focal length of the camera was appro-
priately set, so the images would not be defocused.

Next, the images were artificially blurred and defo-
cused in the following way. Blurred images sB(x, t) were

generated by summing the weighted values inH(−t)G(0,
σ2
t ) of pixels of the neighboring frames. H(−t) is the

Heaviside function and G(0, σ2
t ) is a Gaussian function

with variances σt defining the degree of blurring.

The defocused images sD(x, t) were generated by

summing the weighted values in G(0, σ2
x) of pixels of

the neighboring pixels with variances σx defining the
degree of defocusing.

The results of marker detection for the blurred im-

ages and the defocused images are shown in Figure
5. The top images in Figure 5 are the ones of 67th

frame in the movie. Figures 5(b) and 5(c) are exam-

ples of blurred images and Figures 5(d) and 5(e) are
defocused ones. ARToolKit could not detect markers
in blurred images with σt = 7.0 and defocused images

with σx = 7.0 of Figure 5. ARToolKit markers tend to
be detected on farther positions in defocused images.
The position of mono-spectrum markers were estimated

more correctly than those of ARToolKit markers.

Figure 6(a) shows the average error of the extracted

four corners from the blurred images when the marker
was extracted using ARToolKit. We assumed that the
correct position of the corners of the marker was the

one estimated with ARToolKit from the original ob-
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served images without blurring or defocusing. The er-

ror was calculated for the estimated position from the
blurred or defocused images. The error is infinity when
no marker is detected.

Figure 6(a) shows that the ARToolKit marker and
the mono-spectrum marker could be detected the all

frames. Since blurring makes it difficult to detect edges
perpendicular to the moving direction of the camera,
mono-spectrum marker gave a smaller error, although

it was not negligible. When more blurred as shown in
Figure 6(b), the markers could not be detected in sev-
eral frames since the low-frequency components of the

mono-spectrum marker were severely attenuated with
significant blurring. The average and variance of the
error are listed in Figure 7(a).

Figure 6(c) shows the errors in defocused images.
Although the ARToolKit marker could be detected in
all frames, the error was large on average. The mono-

spectrum marker was extracted in all frames, and the
error was smaller than the error of ARToolKit. Im-
age defocusing makes the ARToolKit marker appear

smaller and results in a larger error. The error of the
mono-spectrum marker is the same level as in the case
of image blurring. When more defocused as shown in

Figure 6(d), both of markers were not detected in sev-
eral frames, since the low-frequency components were
severely attenuated as well as the case of blurring.

Processing times for our mono-spectrum marker ap-
proach are listed in Figure 7(b). For 640×480 pixel im-

ages, 15 or more frames were processed per second, so
the operation was almost real-time. We used two pairs
of vertical and horizontal band-pass filters for the signal

with a period of 7 to 15 pixels and the ones with a pe-
riod of 15 to 31 pixels in the above experiments. More
filters gives a wider depth range of detection, but also

uses more processing time. Consequently, we examined
the change in processing time by varying the number of
filters. Since a bandpass filter with a period of 31 to 63

pixels was employed as the third one, the 3× 3 marker
can be observed as 189× 189 pixels. Figure 7(b) shows
the relationship between the number of pairs of filters

and the processing time. For the image resolution of
640 × 480 pixels, the processing time was 5.1 ms per
band-pass filter on average. For 320×240 pixel images,

the processing time was 1.2 ms per band-pass filter on
average.

More experimental results are shown in Figure 8.
Figure 8 shows the marker detection in various illu-
mination scenes including in indoor and outdoor, and

various scales. The images are captured by a moving
camera. The markers could be robustly detected even
in blurred or defocused images. The results shown in

Figure 8 were generated with the parameter setting.

The number and supporting range of the filters do not

require further tuning in the cases. The additional fil-
ter supporting a period of 31 to 63 pixels enables us
to detect a 3 × 3 marker observed as 189 × 189 pix-

els, although more number of filters takes more time as
mentioned above.

5 Conclusions

We proposed a mono-spectrum marker that can be ac-

curately extracted even from blurred or defocused im-
ages. The marker has only a low-frequency component.
Band-pass filters that pass different frequency compo-

nents are used for extracting the mono-spectrummarker.
In an experiment, the marker was accurately extracted
from blurred or defocused images in real-time.

Processing without GPUs is also a future topic. GPUs
were used for band-pass filtering. They can filter in par-
allel all pixels. ARToolKit has an advantage in process-

ing time and required PC specs. The need to use GPUs
would restrict the applications of the mono-spectrum
marker. The disadvantage could be overcome with dig-

ital signal processors (DSPs). DSPs are used in mobile
devices for processing voice signals, and filtering voice
signals is a major function. Such a function could be

used for extracting the mono-spectrum marker. On the
other hand, GPUs are also mounted on into recent mo-
bile devices. They would be useful for extracting mono-

spectrum markers.
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(a) Original image (b) σt = 4.0 (c) σt = 7.0 (d) σx = 4.0 (e) σx = 7.0

Fig. 5 Results of marker detection on blurred and defocused images. (Top-left) Original image of 67th frame. (Top) Blurred
((b) and (c)) or defocused ((d) and (e)) images. (Middle) Teapots placed on the marker positions detected as an ARToolKit
marker. The marker was not detected when images were blurred and defocused, and detected on farther positions when images
were defocused. (Bottom) Teapots placed on the marker positions detected as a mono-spectrum marker in the blurring image.
The marker positions were correctly estimated. The marker could not be detected in severely defocused image.
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Fig. 6 Results of marker detection. (Top) Average errors of four corner positions of detected markers as ARToolKit markers.
(Bottom) Errors as mono-spectrum marker. The x-axis is the number of frames, and the y-axis is the error.
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(Not including frames in which markers could not be detected.)

Fig. 7 Errors and processing time.
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Fig. 8 Marker detection in various illumination and various scales, indoor and outdoor. The images were captured by Logicool
Qcam Pro 9000 with auto white balance, auto exposure and autofocus functions. The teapots are placed at the center of the
detected markers. Even though several images are blurred or defocused, the markers could be robustly detected. Especially,
the images in the third column include cluttered backgrounds, which consist of the same frequency components with mono-
spectrum dots. The mono-spectrum marker could be correctly detected even in the images.


