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Abstract—Active learning classes, which aim at increasing stu-
dent participation in class, demand more management skills from
the instructor than a conventional lecture class does. However,
the instructor rarely recognizes how his/her lessons are different
from those of others. The instructor cannot know exactly how one
of his/her lessons is different from his/her previous week’s lesson.
This class-to-class comparison is effective in improving classes.
This paper proposes a method for automatically visualizing
the process and content of classes. Although there are ways
to visualize the contents of classes manually, these approaches
involve considerable investments of time and money. Machine
learning techniques can automate the visualization. Our method
estimated content with an average accuracy of 72.4%. Through
our visualization, we confirmed that individual instructors use
time differently from others and use their own time differently
from lesson to lesson.

Index Terms—video analysis; active learning; class improve-
ment; faculty development; scene recognition; visualization.

I. INTRODUCTION

Many educational organizations have introduced active
learning classes, which aim at increasing student participation.
Researchers have demonstrated that active learning classes
can achieve better learning effects than the conventional style
classes do.

An active learning class demands more management skills
from the instructor than a conventional lecture class does.
However, the instructor rarely recognizes how his/her lessons
are different from those of others and only has an intuitive
grasp of how one of his/her lessons is different from his/her
previous week’s lesson. This class-to-class comparison is
effective in improving classes.

Video-recorded lessons (called as video reflection [1-3] or
video ethnography [4-6]) are efficient for review purposes.
Metadata, annotations, and comments on each video provide
analytical resources [2, 7-9].

This paper proposes a method for recognizing and visualiz-
ing the content of lesson videos. Machine learning estimates
the content of videos automatically. In this paper, we assume 5
content categories: Group work, Student presentation, Lecture,
Private work, and Movement. We do not deal with estimations
of more semantic-level content, which are possible via manual
techniques but require considerable time and money. We
designed a simple feature vector consisting of the video and
its sound. Obtaining the feature vector does not require any
special equipment. To visualize the content of a lesson, we
employed the technique of “timelines” [10]. The timelines
approach shows the start and end of each activity and the cor-
responding transition. Multiple paralleled lines and horizontal

linkages show the entire process of the lesson. For visualizing
the content of multiple lessons, mainly to compare multiple
lessons, we employ histograms arranged on a matrix. Based on
the results of our visualization, we can discuss the tendencies
of 79 lessons in 8 subjects over 4 months through numerous
videos with long running times.

Scholars have proposed many methods and tips for drawing
students attention and energizing classes in active learning
settings, including instructional design tools [11] for both
active learning and general classes. Common tips and methods
include making a clear statement of the target of the day [12],
an online voting system for increasing student participation
[13, 14], and approaches to coordinating group members [15].

However, it is not easy for instructors to apply these new
methods and tips in real classes due to the substantial burden
of trial and error involved. In particular, most of these methods
and tips are for individual, isolated situations or purposes;
actually organizing an effective lesson by combining the meth-
ods remains a formidable challenge in most cases. Whereas
questionnaire surveys aid in reviewing lessons, it is difficult to
conduct questionnaire surveys many times, and the complete
results often only emerge after the lessons are finished. To
review lessons, instructors can capture video and thereby
accelerate the PDCA (Plan-Do-Check-Act) cycle of improving
the lessons. Other instructors might provide good suggestions,
as well [1, 9]. Previous works conducted manual analyses of
limited numbers of lessons, considering the effort and time
requirements. Our content estimation method contributes to
visualizing larger volumes of lessons. One of our reasons
for developing the method was the fact that researchers have
never applied the recent techniques of scientific visualization
or information visualization toward efficient lesson reviews, as
far as we know.

Video scene analysis has become a popular theme and
inspired a variety of methods, most of which deal with
relatively large motions like gestures and actions [16, 17].
Meanwhile, videos capturing lessons include small motions
only. Surveillance cameras also produce this type video. Re-
cent efforts in focused fine-grained recognition [18, 19] deal
with this brand of video, as well.

The remainder of the paper proceeds as follows: Section II
introduces fine-grained content recognition for lesson videos.
Section III describes the visualization of estimated content.
Section IV describes the experiments for evaluating the pro-
posed techniques and analyzes the results. Section V discusses
possibilities for future work and concludes the paper.



II. LESSON PROCESS RECOGNITION FROM VIDEOS

As shown in Figure 1, we installed cameras and micro-
phones in a large room with a maximum occupancy of 80 and
arranged 80 movable chairs in the room. We color-coded the
chairs with 8 colors to facilitate the formation of groups.

Fig. 1. The lesson video archiving system in a classroom. Two box cameras
and a fish-eye camera are installed on the ceiling. The sound from the ceiling
and handy microphones are also archived.

We also took measures to facilitate lesson archiving and
the recognition of lesson content. We used two box cam-
eras (SONY SNC-EB630) to produce videos at a maximum
resolution of 1920x1080 (progressive). To reduce the cost
of processing time and data size, we captured videos at a
resolution of 960x540. Based on the observation of the video
signals, we found that the two box cameras produced almost
the same videos in terms of what we needed to classify the
content into 5 types. We thus decided to employ the video
captured by the frontal camera only.

On the ceiling, we installed a fish-eye camera (SONY SNC-
HM662). However, we cannot assume that many classrooms
would equip fish-eye cameras. To ensure that we could avoid
limiting the use of our proposed method, we did not use the
video captured by the ceiling camera but rather employed
it for sound recording purposes only. We also archived the
sound from handy microphones to provide the other channel
of sound. We divaricated and sent the sound to speakers and
a control terminal.

In total, we employed 1 channel of video and 2 channels of
sound for content recognition. All the lessons covered in this
paper were given in the classroom described above.

In our method, we extract the number of pixels with frame
differential in each frame of the video. We denote the number
as v(t) for time t. When the color of a pixel changes over a
threshold, the pixel has a high probability of representing a
moving object. A large v(t) indicates that the activity level is
high at t. v(t) is a cue of content recognition.

High-level face recognition [20] or human tracking [21, 22]
may provide more detailed information on the content of a
lesson. While low-level features, such as v(t), are generally
applicable in many kinds of classrooms and robust for the oc-

clusion between students in a crowded classroom, it would be
difficult to extract high-level features correctly in classrooms.

The two channels of sound a1(t) and a2(t) come from
the ceiling camera and handy microphones, respectively. The
difference between a1(t) and a2(t) provides an important cue
for recognizing who is speaking at a given time t. In group
work and presentation settings, a1(t) is expected to be larger
than a2(t). Lectures, however, are expected to produce an
inverse relationship. In private work settings, the classroom
is relatively silent and noisy when people are moving around.
It is possible to employ natural language analysis for analyzing
lessons at a semantic level, but the sound from a ceiling
microphone is too noisy for proper processing, and handy
microphones likewise suffer from noise in general classrooms.
To analyze sound correctly, one might register technical terms
for each class — a time- and labor-intensive process. We
employed the power of sound only to build a simple and
robust system. We normalize the powers so that the top 1% is
equivalent to 1 for estimating the content.

Figure 2 is overview of the content recognition approach.
We employ 1 channel of video v(t) and 2 channels of sound
a1(t) and a2(t) for content recognition. We categorize lessons
into slots via a Bag-of-Features-based approach [23-25]. We
also denote three channels of signal as C(t), which we can
re-define with other signal channels.

In the learning phase, we prepare videos with content tags.
We assign tags manually so that each time t corresponds to
only 1 of the 5 categories (Group work, Student presentation,
Lecture, Private work, and Movement). If the situation is
applicable to none of the above, we assign Movement to the
corresponding t. There is one tag for every second of video,
but our method does not require users to tag every second. An
effective way of tagging is to define when the content changes
by jumping the video backward and forward via shortcut keys.
For one lesson, it took us approximately 15 minutes to tag 90
minutes of video. As we could understand what the instructors
were talking about from the audio, there was little confusion
during the tagging procedure.

Five 90-minute videos provide 27,000 (= 60 sec. × 90 min.
× 5) learning samples of C(t). We divide the samples into
k clusters via the k-means algorithm and empirically set k to
15. Researchers have shown that arranging only a few samples
in several clusters results in a good k [26], which contributes
to accurate estimation. Individual clusters indicate individual
situations evident at certain moments in lessons. At a given
moment, the video may have active visuals and relatively high-
volume sound; another moment, on the other hand, might
have substantial sound but minimal motion. As we define
the content for specific time ranges, we cannot determine the
exact content for every moment. Thus, we build a histogram
consisting of the situation of a moment and its neighboring
N moment. The dimensions of the histogram correspond
to the clusters of C(t), and the value of a dimension of
the histogram corresponds to the sample number observed
within 2N + 1 seconds. We expect the histograms of two
moments to be similar when the content of the moments is
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Fig. 2. Content recognition via the bag-of-features based approach for the video and sound in lessons.

comparable. Therefore, we plot the histogram-derived vector
in k-dimensional space again. Every vector calculated from the
learning data has a content tag, and the vectors describing the
same content are expected to fall in the corresponding vicinity
in k-dimensional space.

In the execution phase, we extract C(t) without a manual
tag from the video and the sound and plot C(t) and its neigh-
bors in 3-dimensional space. We then construct a histogram
by counting the samples of k clusters and plot a 2N + 1 di-
mensional vector corresponding to the histogram in the space,
where we have already arranged vectors with manual tags
in the learning phase. k vectors with the smallest Euclidean
distances from the new vector form k-nearest neighbors. We
then estimate the results of voting for the tags of the k-nearest
neighbors, the tag, or the content of the new vector. This is
the “k-nearest neighbor” algorithm.

The above method generally produces comb-shaped re-
sults, as Figure 3(a) shows. Compared with the manual tags
(Figure 3(b)), our approach results in very short time slots.
Realistically, there should not be any 1-second activity in a
given lesson. We thus introduce a voting algorithm again by
assuming that the classes cannot switch between activities
in such short times. Based on the tags of a second and its
neighboring P seconds, we accept the highest-voted tag as
the tag for the second. We empirically set the value of P
to 15, which means that the content should switch within 31
(=2P + 1) seconds. An excessively large P produces over-
smoothed results, and an excessively small P creates comb
shaped results. Figure 3(c) shows the results of applying the

voting algorithm. The continuity of the activities is more
similar to the actual manual tags than the original results were.
The remaining problem of poor relationship between manual
and automatic marking of the “movement” cannot be solved
with the voting algorithm. It should be solved with the revision
of learning method or training data.

The k-nearest neighbor algorithm takes a considerable
amount of time when there are many samples in the learning
phase. While a binary tree method [27] can accelerate the
speed in some cases, it was not effective in our case as the
number of samples is too large. We thus employ a simple
random sampling that results in 1/30 of the samples remaining
in the execution phase. Without the random sampling, it takes
24 hours to estimate the content of a 90-minute lesson. With
the random sampling, however, the same 90-minute lesson
takes only about 30 minutes to estimate. This enables us to
apply the execution to a running lesson.

III. VISUALIZING CLASS CONTENT

With the ability to recognize class conditions by the second,
the user can (a) visualize how a given class developed (which
activities the class went through) over the course of a single
lesson and (b) visualize how the class changed from lesson to
lesson.

We used the Timelines approach [10], which visualizes
changes in conditions over time, for our first objective (a).
Figure 3 showed visualizations of class content. In addition
to illustrating how much time a class spent on each activity
and how long each instance of a given activity lasted, the
visualizations also reveal the activities that came before and
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Fig. 3. Refinement of tags by neighboring voting.

after each instance. Putting the Timelines for 2 classes side by
side allows the user to compare how the classes developed.

The Timelines approach is not particularly optimal for
evaluating trends in large numbers of classes, however, as the
method limits the number of items visible on a single screen.
As Figure 4 shows, we first created a histogram showing the
amount of time that each activity category consumed during a
single class lesson. While the approach offers less renderable
information than the Timelines method does, it enables users
to see what the target classes focused on. We also designed our
approach so that the user could display histograms for multiple
classes in a matrix, making it possible to visualize the content
in a list format that shows how each teacher allocates his or
her class time. Our approach also gives the user insight into
how a given instructor’s class time distributions change on a
lesson-to-lesson basis. We envision our method serving as a
complement — not an exclusive alternative — to Timelines.
Together, the two approaches give users an efficient, effective
tool for analyzing class content. As our approach involves
creating Timelines by obtaining second-by-second recognition
results for each class, it takes very little processing time to
generate matrix-based renderings of the histograms.

Fig. 4. A histogram of the class in Figure 3.

IV. EXPERIMENTAL RESULTS

To evaluate our method, we recorded activity in a classroom
with movable chairs (enabling a complete range of student
placement configurations) for 4 months and visualized the de-
velopment of the classes that met in the classroom. We studied
79 lessons in 8 different classes and looked at differences
by instructor and lesson timing. Below is a summary of our
findings.

A. Timelines-based visualization of class development

We manually tagged 5 lessons per subject to create a set
of correct data. Using the jump function and other features of
our video viewer, it took us approximately 15 minutes to tag
90-minute class.

Movement:
Entering/leaving the classroom, moving to get class
materials, and all other activity that does not fall into
any of the following categories.

Private work:
Tests and practice problems.

Lecture:
Explanations and instructions from the instructor.

Student presentation:
Explanations/answers from students.

Group work:
Work involving multiple students.

We conducted learning procedures on 4 classes and then
performed Leave-one-out Cross Validation (LOOCV) [28] on
1 class. Examining the video on a second-by-second basis, we
deemed each second where the manual tag and the automatic
recognition matched to be a “correct” second and used the
ratio of “correct” seconds to the total number of seconds in
the video to calculate the corresponding “accuracy rate.”

The average accuracy rate for the 5 classes was 72.4%, with
a maximum accuracy of 86.8% and a minimum accuracy rate
of 54.5%. The following section focuses on how successfully
our estimation results captured overall trends. Figures 5, 6, and
7 show the results of automatic recognition for the 3 classes



(a) Correct classification via manual tagging

(b) Classification via automatic estimation

(c) Histogram of (a) (d) Histogram of (b)

Fig. 5. Results of BoW-based automatic classification and Timelines-based
visualization. (Accuracy: 76.0%)

with correct manual tags and the corresponding Timelines-
based visualizations. In each Figure, (a) is the version with
the correct manual tags, and (b) shows the results of the
corresponding automatic recognition process. The (c) and (d)
portions, meanwhile, are histograms of the activity times for
(a) and (b), respectively.

The class in Figure 5 represents a typical active learning
lesson, switching back and forth between the Lecture and
Group work categories at short intervals. The same trend is
evident in the results of the automatic classification process, as
well. While the manual tags indicate that there were substantial
amounts of Movement time at the beginning and the end of
the class, as students filtered in and out of the room, the
automatic recognition process tended to mistake these periods
of motion for Group work. The method appeared to have
difficulties distinguishing the video and sound of active group
discussions from the video and sound of movement. Adding
specific settings for the “start of the class” and the “end of
the class” would likely improve the overall recognition rate,
considering that the process would be able to treat the corre-
sponding time periods separately. The automatic recognition-
based histograms capture the trends correctly, showing that

(a) Correct classification via manual tagging

(b) Classification via automatic estimation

(c) Histogram of (a) (d) Histogram of (b)

Fig. 6. Results of BoW-based automatic classification and Timelines-based
visualization. (Accuracy: 70.3%)

the class spent roughly the same amounts of time on Lecture
content and Group work content.

In Figure 6, however, one can see that the approach often
misinterpreted Group work as Movement — an error that
makes it impossible to express individual periods of Group
work correctly via the Timelines method. To ensure that
the method recognizes Movement and Group work more
accurately, we will need to improve the feature quantities and
classification methods involved.

Figure 7 is an example of what an even lower accuracy
rate looks like. As the Figure shows, our approach often
put Private work periods into the Group work category and
Student presentation periods into the Lecture category. These
erroneous classifications resulted from insufficient learning
sampling for Private work and Student presentations. With
our system unable to guess correctly, the overall accuracy
rate was relatively low. Boosting the accuracy rate would
thus entail using a larger pool of learning data containing
Private work and Student presentation periods. The histograms
that our approach generates sometimes underestimate these
periods, which could make it difficult for users to track the
corresponding trends in the visualization results. The periods



(a) Correct classification via manual tagging

(b) Classification via automatic estimation

(c) Histogram of (a) (d) Histogram of (b)

Fig. 7. Results of BoW-based automatic classification and Timelines-based
visualization. (Accuracy: 56.5%)

of Group work and Lecture activity also ended up longer
than the original Movement period. Overall, the classification
results could only provide a rough, basic approximation of
how much time each activity type occupied.

B. Histogram matrix-based visualization of the content of
multiple classes

Figure 8 is a visualization of how each of the 8 subjects
developed over their 15-lesson programs. The x-axis represents
the subjects, while the y-axis represents lessons 1 to 15. The
histograms illustrate the time that each class spent on activity
in the Movement (M), Private work (S), Lecture (L), Student
presentation (P), and Group work (G) categories. For our
analysis, each lesson lasted 98 minutes: 90 minutes of actual
time plus 4 minutes before and after the class. The Mon 4 and
Tue 3 courses were taught by the same instructor. The Wed
1 course was the only subject where all classes were taught
by 3 instructors. Figures 5, 6, and 7 correspond to the 3rd,
6th, and 5th lessons of the Mon 4 subject course, respectively.
We manually tagged the 1st, 2nd, 3rd, 5th, and 6th lessons of
the Mon 4 subject course to create our base of learning data.

The results for all of these lessons represent the automatic
recognition results.

At the current stage, our method appears not to be accurate
enough for certain lessons; the corresponding histogram matri-
ces may thus lead to erroneous interpretations of class trends.
Considering the imperfections in the method, users should treat
the matrix-based histogram renderings as contextual aidesnot
definitive visualizationsand validate the results by checking the
source video for confirmation. Improving the overall accuracy
rate is one of the key issues for future work.

The lessons with no histograms either took place outside our
experiment classroom or were unfilmable due to scheduling
or other factors. Many instructors used lessons 8 and 15 to
administer written mid-term and final tests, respectively, which
meant that several groups moved to other classrooms with
fixed seating for those two weeks.

Optimized for active learning with several small white-
boards for facilitating group discussions and projectors capable
of displaying content on all 4 walls, the classroom we used for
our study is a frequent class setting for teachers who prefer the
active learning approaches and employ various active learning
techniques. Despite the environmental conditions, however,
most of the classes spent a majority of their class time on
instructor lectures.

The data shows that Group work occupied a significant
proportion of the classes in the Tue 1 subject course. Lessons
7, 11, 12, and 13 devoted a particularly substantial amount
of time to Group work. Lesson 6, however, spent little time
on Group work and instead of consisted primarily of Student
presentations.

Lessons 12 and 13 of the Wed 1 subject course had
specifically large amounts of Movement time. A look at the
source video reveals a different picture, though: lessons 12 and
13 actually included long stretches of Private work activity,
with the instructor walking around the class to check on the
students. The method misinterpreted this period of activity as
movement. The recognition problems probably stemmed from
issues with the learning data for the Movement category, which
contained pre- and post-class periods when the classroom
was completely empty. When our system encountered lessons
12 and 13, the generally minimal movement and low sound
pressure likely led the system to recognize the conditions as
similar to the silent, empty-room conditions of the pre- and
post-class periods in the learning data. At the current stage, the
accuracy rates for special situations lacking sufficient learning
data tend to be low. Getting accurate readings thus currently
requires the user to check both the histogram and the video
itself. Tweaking the system to process the pre- and post-class
lesson periods properly could also be one way of boosting
overall recognition rates.

Although the Mon 4 and Tue 3 subject courses had the same
instructor, the two courses exhibited different trends: the Mon
4 course emphasized Group work, while the Tue 3 course
trended more toward the Lecture category. The differences
in the two courses may have had something to do with the
target students. Whereas the Mon 4 subject course consisted



Fig. 8. A histogram of automatically recognized class content in a matrix rendering; we manually tagged the classes outlined in yellow and used the tags as
our learning data.

primarily of 2nd-year students, thereby allowing for a broader
range of activities, the instructor probably spent more time
on lectures in the Tue 3 course because most of the students
in the class were in their 1st years of study. The 2 classes
generally included a significant amount of Movement, and the

instructor also often had students work in groups and submit
minute paper [27].

While the Mon 3 and Fri 2 subject courses exhibited
consistent time allocation trends from lesson to lesson, other
courses allocated time differently every lesson. These transi-



tions suggest that instructors either modified their time usage
as the class progressed or gradually worked to find the optimal
class style through trial and error.

The data for lesson 14 reveals that all the classes followed
a similar time management pattern as the students prepared
for their respective final examinations in lesson 15.

V. CONCLUSION AND ISSUES FOR FUTURE WORKS

For this study, which focused on active learning classes, we
used mechanical learning to automate the content classification
process and then combined the Timelines approach and matrix-
based histogram renderings to visualize the class content. Our
content estimation method had an average accuracy rate of
72.4%. By visualizing class content, our method makes it
possible for users to get a look at what goes into 90-minute
classes and establish a context for examining trends across
multiple classes.

Improving the overall accuracy rate is one of the key
issues for future work. For about half of the classes we
studied, we had the instructors wear watch-type sensors (EP-
SON Wristable GPS SF-810) to measure and record the
instructors’ heart rates and walking speeds. Although we did
not incorporate the readings from the wearable technology
into our analysis for the present paper, we believe that the
data could aid in differentiating between Lecture and Student
presentation periods — two activity categories that the system
had trouble recognizing correctly. The reason why we could
only obtain data for approximately 50% of the classes was that
the instructors either forgot to wear the devices or intentionally
chose not to wear them amid the hectic conditions that often
characterize the start of a given class. Given the issues with
the wearable devices, future research will thus also need to
focus on finding ways of simplifying complicated tasks and
improving accuracy rates via video and sound only.
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