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ABSTRACT 

This paper proposes the methods for creating a human-

body model that reflects individual victim characteristics 

and obtaining position information on the human-body 

model for the purpose of forensic autopsy data 

visualization. Although modern imaging technologies, 

such as CT and MRI, make it possible to obtain fine 

volumetric human-body model, these technologies are 

still not widely used in the real forensic autopsy sites due 

to the cost. To enable a forensic specialist to easily create 

3D models of victims, we propose a new method which 

uses an affordable depth-sensing camera and requires few 

user interactions. To visualize the autopsy data directly 

on a 3D model, we also propose a method for specifying 

a position on the 3D model without impeding the 

progress of the autopsy procedure. 

 

1. INTRODUCTION 

Forensic autopsy reports play significant roles in court 

decisions. It includes data on any injuries apparent on the 

body subject to the autopsy, photographs of the 

corresponding injury locations, and the findings of the 

medical examiner who performed the autopsy. Forensic 

autopsy reports contain substantial amounts of technical 

terminology and unfamiliar statements. For jurors 

without any background in legal constructs or autopsy 

procedures, then, it can be difficult to understand the 

nature of the injuries. Computer graphics (CG) 

technology can be useful in making autopsy results more 

intuitive, as they provide direct visual renderings of 

injuries and other conditions on a 3D CG model of the 

victim.  

Figure 1 shows an example of the type of forensic 

autopsy data visualization that this study addresses. The 

visualization method involves associating injury data and 

photographs from an actual forensic autopsy to injury 

locations on a human-body model that reflects the unique 

individual characteristics of the body subject to the 

autopsy. Selecting a site on the human-body model brings 

up the associated forensic autopsy data in a new window 

and renders a direct visualization on the human-body 

model via texture mapping.  

This visualization approach requires two primary 

steps: building a human-body model that reflects the 

individual characteristics of the body subject to the 

autopsy and obtaining position information on the 

human-body model, thus enabling the mapping of 

forensic autopsy data. Researchers have attempted to 

create human-body models using the “virtual autopsy” 

[1] approach, which involves performing a CT scan on 

the body and analyzing the results on a computer. But 

these technologies are still not widely used in the real 

forensic autopsy sites due to the cost for purchasing and 

maintaining 3D imaging instruments. To obtain forensic 

autopsy data from the source in real time and associate 

the data with a corresponding human-body model, one 

would also need to be able to gather position information 

during the autopsy without impeding the progress of the 

autopsy procedure. 

To address these needs, this study aims to propose a 

method for using a depth-sensing camera and a pointing 

device to create a human-body model that reflects 

individual characteristics and allow users to obtain 

position information on the human-body model during 

the course of an autopsy. 

 

 
Figure 1: An example of forensic autopsy data visual-

ization  

 

2. RELATED RESEARCH 

Input system for forensic autopsy data  

Boussejra et al. [2] proposed an input system for forensic 

autopsy data. The system was built with a mark-up 

language LMML (legal medicine mark-up language) 

which is designed for describing forensic autopsy data. A 

medical examiner can quicker and smoother input the 

data than the conventional manual description. The 

modeling and position specification technologies 

proposed in this paper provides the key technology for 

implementing the browser for viewing LMML data in 3D. 
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Human-body modeling 

Xi et al. [3] used non-numerical attributes like gender, 

age, race, marital status, and occupation to predict body 

shapes and build human-body models accordingly. 

Although the research makes it possible for scientific 

criminal investigators without any photographs of a 

given suspect to get an estimation of the individual’s face 

and body shape based solely on age, occupation, and 

other characteristics, the approach is not an effective 

means of creating human-body models that reflect 

specific individual characteristics. Anguelov et al. [4], 

meanwhile, proposed a method for creating human-body 

models by using a training database of learned posture 

models. These approaches, however, are not effective 

means of creating human-body models that reflect 

specific individual geometric characteristics. 

Allen et al. [5] used a standard model with an average 

body shape and body scan data to create a human-body 

model. As scan data is susceptible to the effects of noise 

and data damage, Allen et al. began by preparing a 

standard model free of noise and incomplete surfaces and 

then deformed the model in accordance with the scan data. 

This made it possible to create a human-body model that 

not only conformed to the shape of the scan data but also 

eliminated the chances of any noise or incomplete 

surfaces undermining the results. The Allen et al. [5] 

method, which enables the creation of human-body 

models that feature individual characteristics and a full-

body mesh, thus provided a useful basis for our study. 

Drawing on the Allen et al. [5] approach, we prepared a 

standard model and deformed it based on data readings 

from a depth-sensing camera to create a human-body 

model that reflects individual characteristics. 

 

3D position specification 

To obtain position information on the 3D human-body 

model, thereby enable the mapping of autopsy data onto 

the 3D model, we need a method allowing the user to 

easily specify a position on the 3D model during the 

process of autopsy. As means for allowing interaction 

between the real space and the there-dimensional space, 

there are methods to use gestures and mobile devices [6] 

[7]. These researches, as the means of interaction are 

effective, but are not tailored for acquiring position 

information on any 3D space.  

 

3. PROPOSED METHOD 

3.1. Overview  

Figure 2 depicts the overview of the proposed method. 

Before the forensic autopsy begins, we use Kinect RGB-

D sensor mounted on the ceiling of the autopsy room to 

obtain a scan of the body subject to the autopsy and then 

use the scan data to create a human-body model that 

reflects the individual characteristics of the body. Next, 

the medical examiner proceeds with the forensic autopsy 

and notes findings. When recording data or findings on a 

given injury, the medical examiner specifies the position 

of the injury by illuminating the site with a laser pointer. 

The RGB-D sensor captures images of sites that the 

examiner has specified, and our system then 

automatically converts that input into position 

information on the human-body model.  

 

 
Figure 2: Overview of the proposed method 

 

3.2. Human-body modeling 

The proposed method generates a human-body model in 

the following 2 steps:  

1. Obtain scan data via an RGB-D sensor 

2. Deform the standard model based on the scan data 

obtained in step 1 

Scan data from RGB-D sensors is susceptible to 

several problems, including noise that can occur during 

the body scan, mesh collapse in areas that the scan fails 

to measure correctly. Human-body models used in the 

visualization of forensic autopsy data also need to retain 

anatomic reference, which aid in the acquisition of 

position information from the autopsy findings. Figure 3 

shows the anatomic reference points.  

 

 
Figure 3: Anatomic reference points 

 

When recording position information for an injury in 

his or her findings, the medical examiner uses the 

anatomic reference point(s) nearest the injury site to 

denote the location. Reproducing these recorded findings 

in a visualization would require a human-body model 

with the same anatomic feature points.  

For these reasons, visualization cannot be generated 

using the scan data alone. Drawing on the Allen et al. 

method [5], we thus deform a standard, predefined full-

body mesh model to fit the scan data. This makes it 

possible to generate a noise-free, incomplete surface-free 

human-body model that reflects individual 

characteristics. By predefining anatomic reference points 

on the standard model, our method also ensures that the 

resulting human-body models include anatomic 

reference point information. As will be described later in 

this section, we also predefine a skeleton on the standard 

model for the purpose of posture registration  

RGB-D

sensor

Forensic 

autopsy data

Pointing device
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The Allen et al. method [5] uses 3 error items, data 

error, smoothness error, and marker error of Formula 

1~3, respectively, to evaluate the degree of similarity 

between the standard model and scan data.  

 

 𝐸𝑑 = ∑ 𝑤𝑖  𝑑𝑖𝑠𝑡2(𝑇𝑖𝑣𝑖、𝐷)

𝑛

𝑖=1

 (1) 

 𝐸𝑠 = ∑ ‖𝑇𝑖 − 𝑇𝑗‖
𝐹

2

{𝑖、𝑗|{𝑣𝑖、𝑣𝑗}∈𝑒𝑑𝑔𝑒(𝑚𝑎𝑡ℎ𝑐𝑎𝑙{𝑇})}

 (2) 

 𝐸𝑚 = ∑‖𝑇𝑘𝑖
𝑣𝑘𝑖

− 𝑚𝑖‖
2

𝑚

𝑖=1

 (3) 

 

In Formula 1, each vertex vi in the standard model is 

influenced by a 4 × 4 affine transformation matrix Ti. 

dist2() is the minimum distances between n vertices vi on 

the standard model and the vertices on scan data D. We 

then match the standard model with the scan data so that 

the total of the minimum distances is as small as possible. 

wi is a weight for ensuring that the process does not link 

non-matching vertices. If the minimum distances is large, 

we decide that the correspondence between the points is 

not reliable (for example there is missing data on scan 

data D) and we set the weight wi to zero.   

For the smoothness error of Formula 2, we determine 

the Frobenius norms of transformation matrices Ti and Tj 

with vertices vi and vj, which are adjacent to each other 

on the standard model, to calculate the amount of change. 

We then implement controls to produce the deformation 

with the minimum amount of change and thereby 

maintain the mesh configuration of the standard model.   

For the marker error function of Formula 3, the L2 

norm for m marker points vki on the standard model and 

marker point mi on the scan data are computed. We 

perform matching to minimize the total of the distances. 

The marker points in our study are the anatomic reference 

points from Figure 3. The final error function E is the 

linear combination of the three error items given above: 

 

 𝐸 = 𝛼𝐸𝑑 + 𝛽𝐸𝑠 + 𝛾𝐸𝑚 (4) 

 

By performing optimization processing to minimize 

the result of Formula (4), we obtain transformation 

matrix T for transforming the standard model. In Formula 

(4), α, β, and γ are weights for controlling the ratios of the 

three error functions. We deform the standard model by 

applying calculated transformation matrix T to the 

vertices of the standard model. 

According to our experiments, using Allen’s method 

[5] with a low-resolution standard model can 

successfully create a human-body model that closely 

resembled the shape of the scan data but it may fail in 

case of a high-resolution standard model. We observed 

that the reason for this problem is caused by the 

difference of postures. When the standard model and the 

scan data have very different postures, the smoothness 

error function 𝐸𝑠  falls into a local solution, thus 

interfering with the initial deformation procedure. We 

solve the problem by using the skeleton defined on the 

standard model to align the postures between the standard 

model and scan data first before starting the deformation. 

Figure 4 illustrates the steps of the skeleton-based 

initial deformation process. 

1. Transform the control points of skeleton to the 

corresponding positions in the scan data 

2. Calculate the transformation matrix for converting 

the bones of the skeleton on standard model to the 

bones of the skeleton obtained in step 1 

3. Establish a transformation matrix applicable to the 

vertices of the standard model and then perform the 

initial deformation 

 

 
Figure 4: Overview of the skeleton-based initial 

deformation process 

 

To transform the control points of the skeleton on the 

standard model to the corresponding points of the scan 

data, we use the transformation matrix obtained by 

optimizing the marker error function 𝐸𝑚 . This is 

reasonable because the positions of markers (the 

anatomic reference points) are close to that of the control 

points. Denoting a bone of standard model and its 

correspondence in scan model as vi and vi’, respectively, 

the translation matrix t, scaling value s, and rotation 

matrix r for each bone can be computed via the following 

formulas: 

 

 𝑡𝑖 =  𝑣𝑖
′ − 𝑣𝑖 (5) 

 𝑠𝑖 =
‖𝑣𝑖
′ − 𝑣𝑗

′‖

‖𝑣𝑖 − 𝑣𝑗‖
 (6) 

 𝑟𝑖 = (

𝑟𝑥
2(1 − 𝑐𝑜𝑠𝜃) + 𝑐𝑜𝑠𝜃 𝑟𝑥𝑟𝑦(1 − 𝑐𝑜𝑠𝜃) + 𝑟𝑧𝑠𝑖𝑛𝜃 𝑟𝑥𝑟𝑧(1 − 𝑐𝑜𝑠𝜃) + 𝑟𝑦𝑠𝑖𝑛𝜃

𝑟𝑥𝑟𝑦(1 − 𝑐𝑜𝑠𝜃) + 𝑟𝑧𝑠𝑖𝑛𝜃 𝑟𝑦
2(1 − 𝑐𝑜𝑠𝜃) + 𝑐𝑜𝑠𝜃 𝑟𝑦𝑟𝑧(1 − 𝑐𝑜𝑠𝜃) + 𝑟𝑥𝑠𝑖𝑛𝜃

𝑟𝑥𝑟𝑧(1 − 𝑐𝑜𝑠𝜃) + 𝑟𝑦𝑠𝑖𝑛𝜃 𝑟𝑦𝑟𝑧(1 − 𝑐𝑜𝑠𝜃) + 𝑟𝑥𝑠𝑖𝑛𝜃 𝑟𝑧
2(1 − 𝑐𝑜𝑠𝜃) + 𝑐𝑜𝑠𝜃

) (7) 

 𝑐𝑜𝑠𝜃 =
(𝑣𝑖 − 𝑣𝑗) ∙ (𝑣𝑖

′ − 𝑣𝑗
′)

‖𝑣𝑖 − 𝑣𝑗‖‖𝑣𝑖
′ − 𝑣𝑗

′‖
 (8) 

 𝑠𝑖𝑛𝜃 = √1 − 𝑐𝑜𝑠2𝜃 (9) 

 (

𝑟𝑥

𝑟𝑦

𝑟𝑧

) =
(𝑣𝑖 − 𝑣𝑗) × (𝑣𝑖

′ − 𝑣𝑗
′)

‖(𝑣𝑖 − 𝑣𝑗) × (𝑣𝑖
′ − 𝑣𝑗

′)‖
 (10) 

 

To deform the whole model at 3rd step, we need to 

determine the transformation matrix to apply to each 

vertex of the standard model. The transformation matrix 

applied to each vertex should be computed based on the 

most relevant bone, for example based on the 

transformation matrix of the closest   bone. 

1. 2. 3. 
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The geodesic distance is useful if want to find the 

distance between two vertices on the mesh, but generally 

bones are defined in space rather than on mesh, so we 

can’t use geodesic distance. Also, Euclidean distance can 

associate a bone to a vertex on a different part of the body, 

such as associating an arm to the closest side of upper 

body, so it is not possible to determine an appropriate 

transformation matrix. Therefore, we first segment the 

standard model using Huang et al. method [8] before 

using Euclidean distances to ensure the correct 

correspondence. Figure 5 shows the segmentation of the 

standard model.  

 

  
Figure 5:  Segmentation of standard model 
 

We compute the Euclidean distances between the 

vertex and bone according to segmentation result, and 

associate vertices with bones that are closest in distance 

and determine the transformation matrix to apply to each 

vertex. After that, we perform initial deformation using 

skeletal subspace deformation to obtain a smooth result.  

With the initial model available, it is further refined by 

iterating the optimization process that minimize the error 

function given in Formula (4). Since the resolution of the 

standard model used is low,  a low resolution model will 

be constructed as the result. Finally, we increase the 

resolution of the resulting model by using Catmull and 

Clark’s method [9].  This method for recursively 

generating surfaces that approximate points lying-on 

mesh of arbitrary topology, so it is possible to maintain 

the topology of result model and increase the resolution. 

Figure 6 shows a result of the proposed method. Figure 

6(a) and (b) are the standard model and scan data, 

respectively.  Figure 6(c) is the result of the skeleton-

based initial deformation and Figure 6(d) is the final 

result. As the Figure indicates, the initial deformation 

process ensured that even a high-resolution standard 

model with different posture would produce results that 

approximated the shape of the scan data. One can also see 

that performing a detailed deformation using the initial 

posture deformation results created a human-body model 

with an even closer resemblance to the shape of the scan 

data. Also, Figure 6(e) shows the result of increasing the 

resolution of Figure 6(d). As in Figure 6(d), it can be 

confirmed the result is close to the shape of scan data. 

 

  
(a)Standard model (b)Scan data 

   
(c)Initial result (d)Final result (e)Final result 

(high resolution) 

Figure 6:  Modeling with the proposed method 
 

3.3. Position Specification 
Below is an overview of the process for identifying a 

specified position on the human-body model. 

1. Use an RGB-D sensor to detect specified positions 

pointed by a laser pointer 

2. Convert the specified positions detected in step 1 to 

coordinates on the human-body model 

3. Obtain the position on the human-body model 

 

To maximize operability in actual autopsy settings, we 

allow the medical examiner uses a laser pointer to 

illuminate and thereby specify the positions of sites 

where he or she intends to record findings. By then using 

an RGB-D sensor to detect the specified positions, our 

method automatically calculates the corresponding 

positions on the human-body model. 

We detect a position that the medical examiner has 

specified with the laser pointer using background 

subtraction technique. We obtain frame-by-frame images 

via the RGB-D sensor, and then the position pointed can 

be detected as the position with large difference from the 

previous frame. Next we need to convert the position 

coordinates in the RGB-D sensor coordinate system to 

the position coordinates of the human-body model. To do 

so, we use a rigid ICP algorithm to register the predefined 

skeleton for the standard model and the skeleton obtained 

via RGB-D sensor and then obtain a transformation 

matrix for converting coordinates from the RGB-D 

sensor coordinate system to the human-body model 

coordinate system. 

 Figure 7 shows the results of obtaining positions on 

the human-body model. We can see that using a laser 

pointer resulted in accurate specified positions and that 
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the position information on the human-body model 

conformed to the original specified positions. 

 

      
(a) Pointed posion on a 

mannequin 

(b) Computed position on 

the 3D model  

Figure 7: Results of obtaining position information on 

the human-body model 

 

4. CONCLUDING REMARKS 

This study proposes a method for creating a human-body 

model and obtaining position information on the human-

body model for visualizing forensic autopsy data. As 

shown in Figure 6, although the resulting model presents 

the shape characteristics of the scan data, the method 

failed to produce the correct shape of hands. One possible 

reason is that the smoothness error function 𝐸𝑠 may fall 

into a local solution for the fingers. We will try to 

introduce some structure aware method for solving this 

problem.  Currently the algorithm has only been tested in 

the laboratory by scanning a mannequin with a RGB-D 

sensor. We plan to evaluate and improve the method by 

applying it to real autopsy site.  
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