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<Summary> We focus on eye tracking by head motion. This type of eye tracking does not provide the

most accurate results, but it does not require a user to wear cumbersome sensors like cameras on glasses. The

approach works for many applications, such as the extraction of human attention by surveillance camera

or an intuitive interface for tablet devices. Through a preliminary experiment, we confirmed that head

direction is often largely different from eye direction. We propose to estimate accurate eye direction by using

head motion history. A sequence of head directions and the differentials provide richer information than

head direction at one moment. Using multiple regression analysis (MRA) and dynamic coupled component

analysis (DCCA), we examined the relationship between eye direction and head motion history, and reduced

the error rate by 7.2% and 0.8% on average.
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1. Introduction

Eye direction is a promising cue for understanding a

user’s attention. For example, eye tracking data obtained

by surveillance camera images detect human attention for

public signs. The most common technique for estimating

eye direction is capturing images of human eyes1). Cam-

eras installed on a person’s glasses or at the frontal side

of a monitor display are user for the purpose. However,

this method forces a user to wear cumbersome devices, in

case of cameras on glasses, or to sit on a chair, in case of

cameras on a monitor display. To understand human at-

tention in a real context, the method is not applicable. In

contrast, eye tracking by head motion can be applied for

crowds on a street. It can be used on infant subjects who

hesitate to wear glasses or other special devices. However,

eye movement estimated with head motion is not as ac-

curate as tracking eye movement with cameras. Sankara-

narayanan et. al. proposed an eye tracking method for

eye tracking of pedestrians captured in multiple surveil-

lance camera video images2). They assumed that a per-

son’s face direction is the same as his or her eye direction.

The assumption is often used for such applications, but

they have not focused on its accuracy.

In this paper, we focus on improving the accuracy of

eye tracking data by head motion. This is a pilot study

of using head motion history, not only head direction at a

certain moment. We employ a gyro sensor on the head for
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Fig. 1 Environment of experiment

data logging. Figure 1 shows experimental environment.

The gyro sensor will be replaced by a surveillance camera

or other lighter devices in future works; however, this is

not the focus of this paper. Also note that head motion

history cannot represent eye direction. It is clear that

humans can change eye direction without moving their

heads. The contribution of our method is to improve the

accuracy of eye tracking by head motion history.

When the directions of the head and the chest are the

same, eye direction estimated only from head direction

at the moment is the same as the direction of the chest.

If the head is directed to the right at the previous mo-

ment, we can expect that the eye will direct to the left

at the next moment. Humans see an object by collabo-

ratively moving their eyes and heads. It is called “eye-

head coordination”3). This topic is well discussed in the

context of cognitive psychology. Many experiments have

been conducted within limited components such as dis-

placement from the center position. The difference of



individuals should be taken into account for engineering

applications, but it tends to be ignored. In the context

of computer vision or motion estimation, Okinaka et al.4)

also focused on eye-head coordination, and tried to im-

prove the accuracy of eye tracking. They employed the

speed and acceleration of head direction. Our employed

head motion history includes the trajectory of the head

direction in addition to speed and acceleration. A more

sophisticated regression model improves the accuracy.

We have proposed a method for improving the accuracy

of eye tracking by head motion in5). We further discuss

on which stimulus image contributes to more improve the

accuracy of eye tracking in this paper. The distribution

of salient regions in the stimulus image tends to affect the

degree of improvement.

We first examine the accuracy of eye tracking by head

motion in Section 2. The method for improving the accu-

racy of eye tracking by head motion history is represented

in Section 3. Experimental results are shown in Section

4, and we conclude the paper and discuss future work in

Section 5.

2. Accuracy of Eye Tracking

We first examined the accuracy of eye tracking. As

shown in Figure 1, still stimulus images were displayed

on a 70-inch LCD display monitor. A subject stood 1.4m

away from the monitor. Our employed eye tracker NAC

Technology EMR-9 estimates eye direction with an ac-

curacy of 0.1 degrees. The eye tracker has three cam-

eras capture images of two eyeballs and outward. When

assuming the directions of eyes and head are the same,

the eye points always come to the center of images cap-

tured by the camera that shoots outward. The distance

between the eye position and the center of an image is

equal to the error of eye tracking by head direction at a

given moment.

An example of root mean square error (RSME) of the

angular error is plotted in Figure 2. The average is

about 30 degrees, and the maximum is more than 70 de-

grees. The accuracy is much worse than with eye trackers

on glasses.

3. Eye Tracking by Head Motion History

We tried to improve the accuracy of eye tracking. The

core idea was using head motion history, not only head

direction at a moment. As shown in Figure 3, the direc-

tion of head is not same as the direction of eyes especially

in motion. The human eye-head coordination is known

Fig. 2 Error of eye tracking by head motion
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as compensating movement and synergistic movement6)

. Related to the moment of eye movement, the compen-

sating movement of head is observed between -240ms to

+80ms, and the synergistic movement is observed -240ms

to 0ms. The head motion history provides a cue for cor-

rectly estimating the eye direction.

Figure 4 shows the overview of this paper. The con-

ventional model treated the eye direction as the head

direction. Our proposed method introduces head mo-

tion history and two state models for integrating eye and

head direction. The head direction and head motion his-

tory are logged by wearable devices in the experiment.

Although we understand the wearable devices are not re-

alistic for a practical use, since our focus is to clarify the

possibility of head motion history for accurate eye track-

ing, we keep the problem as future work. We compare

the accuracy of eye directions estimated with the conven-

tional method and proposed method.

We used multiple regression analysis (MRA) and dy-

namic coupled component analysis (DCCA)7)to learn the
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relationship between head motion history and eye direc-

tion. MRA has a simple model, so it is easy to use, but it

is difficult to learn non-linear angular relationships with

MRA. DCCA elucidates the relationships between dif-

ferent dimensional datasets. It does not directly project

the input vector into the output vector. DCCA assumes

a lower dimensional space substantively controls the in-

put and output, and shows the projections of input and

output vectors for the lower dimensional space. DCCA

works well even though the input and output vectors are

represented in a high dimensional spaces. DCCA is ro-

bust for non-linear data, compared with simple MRA.

Ma and Deng8)applied DCCA to synthesize avatar mod-

els with eye motion. They employed DCCA to control

eye motion of the avatar by human head tracking data.

The introduction of smoothness function makes it robust

even for noisy data. A disadvantage is the lower speed of

convergence because of the complexity of the model.

Figure 5 shows the difference among three types of

learning. The input vector is roll θht−k, pitch φht−k and

yaw ψh
t−k of head direction at time t, its previous time

t − k (k = 0, · · · , n) and constant 1. Total dimension is

3(n+1)+1. The output vector is roll θet , pitch φ
e
t , and yaw

ψe
t of eye direction at time t. The dimension is 3. In the

conventional model shown in Figure 5(a), eye direction

is estimated as the same direction of the head. MRA, in

Figure 5(b), shows the relationship between the input and

output vectors as a matrix that projects the input vector

into the corresponding output vector. DCCA, in Figure

5(c), shows the relationship by two matrices that project

the input into the corresponding lower dimensional point,

and the point is projected into the output with small

error. In the learning phase, we gathered the input and

output vectors with the glasses-type eye tracker and the

gyro sensor mounted on the head. By MRA, a projection

matrix A is optimized to minimize energy E defined by

the input vectors and output vectors as the following.

et =

⎛
⎜⎝

θet

φet

ψe
t

⎞
⎟⎠ , ht =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θet−n

φet−n

ψe
t−n

...

θet

φet

ψe
t

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

E =

t∑
||et −Aht||. (1)

(a) Conventional model

(b) Multiple regression analysis (MRA)

(c) Dynamic coupled component analysis (DCCA)

Fig. 5 Differences among three learning models

DCCA treats the projection matrices B and C as fol-

lows. S is a temporal smoothing matrix. The matrices

B and C contribute to project the signal to lower dimen-

sional space, and the matrix S contributes smoothing of

the signal. B and C are essential, and S is complemental

in DCCA. The hat notations mean that the dimensions

are reduced by principle component analysis (PCA) or

other techniques. λ1 and λ2 are arbitrary constants for

weighting the terms.

Estatic =
t∑(

||ĥt − Cet||22 + λ1||et −Bht||22
)
, (2)

Edynamic = Estatic + λ2

2∑
||et − Set−1||22. (3)

Estatic represents the energy that the input vectors and

output vectors are projected, to the same corresponding

points of the common lower space, and Edynamic controls

the temporal smoothness of the output vectors.
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Fig. 6 Wearable eye tracker and 9D gyro sensor for the
experiment. Subjects stare at the stimulus im-
ages with wearing the devices.
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Fig. 7 Design of subject studies

4. Experiments

We conducted a subject study to investigate whether

the proposed method improves accuracy. Six subjects

(five males and one female; university students in their

20s) stood 1.4m away from a 70-inch monitor, as shown

in Figure 1. A 9D gyro sensor was mounted on their

heads, and they wore an eye tracker as shown in Figure

6. The equipment recorded head motion history and eye

directions in time sequence.

Twenty-six still stimulus images were displayed for 15

seconds each. Between two stimulus images, a white dot

was displayed at the center of the monitor, and we asked

the subjects to stare at it. The dot controlled the initial

position for each image. Because the monitor reflected

objects in the room, we kept the room dark so as to

reduce reflections. We had the subjects freely see still

stimulus images. Each stimulus image was shown for 15

seconds. We did not give any instructions on how the

subject should see the images.

An eye tracker often misses eye direction. According

to the specifications sheet, the eye tracker we used can

correctly estimate ±20o horizontally and ±40o vertically.

The range could not cover the whole of the monitor, then

the eye tracker lost the eye direction when the subject saw

the corners of the monitor. We ignored the eye tracking

data including the missing frames both in learning and

execution phases. Only the eye tracking data within the

stimulus images was used for the regression model and the

calculation of error. In our experimental environment,

the limits were ±29o in horizontal and ±17o in vertical.

We set no limit for the direction of head.

We adopted our proposed methods for eye tracking and

head motion in time sequences. MRA and DCCA show

the relationship of eye direction and head motion history

of six subjects from the data for 25 stimulus images in the

inter-user study as shown in Figure 7(a). The estima-

tion error was calculated by adopting the learning model

into the data for one unused stimulus image. We vali-

dated how the learned model is generalized to images in

this study. The situation of five subjects with 26 stimu-

lus images in the intra-user study is shown in Figure 7(b).

The error was calculated by adopting the learning model

into the data of one unused subject. We validated how

the learned model is generalized between subjects in this

study. The design is called as leave-one-out cross valida-

tion. We set λ1 = 0.40 and λ2 = 0.80 for DCCA, n = 5

for the history frames, which were the best parameters

through our trials and errors.

Figure 8 shows the reduction percentage of estima-

tion error for each stimulus image in the inter-user and

intra-user study. Figures 8(a) and 8(c) indicate the error

reduction achieved by head motion history with MRA,

and Figures 8(b) and 8(d) indicate the error reduction

achieved by head motion history with DCCA. Figures

8(a) and 8(b) are the results of the inter-user study. Fig-

ures 8(a) and 8(b) show the median of estimation error

for each image given by 6 subjects, and Figures 8(c) and

8(d) show the median of estimation error for each sub-

ject given by all images. Negative values mean that the

accuracy of eye tracking was improved.

The average error for all stimulus images was -7.2%

with MRA, and -0.8% with DCCA in the inter-user study.

For most stimulus images and subjects, head motion his-

tory improved the accuracy of eye tracking. The absolute

values of original estimation error were 29.1o (S.D. 2.9o)

on average. By introducing the regression models, the
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(a) Inter study, MRA (b) Inter study, DCCA

(c) Intra study, MRA (d) Intra study, DCCA

Fig. 8 Estimation errors of subject studies

error became 26.5o (S.D. 2.4o) on average in MRA and

29.2o (S.D. 2.6o) on average in DCCA. Compared with

MRA of the simple model, DCCA did not improve the

accuracy. According to the results of a one-sided t-test,

only the result with MRA in the inter-study (Figure 8(a))

was significant (p < 0.05). There was no significant dif-

ference for the results with DCCA.

In the intra-user study, the average error was increased

by 4.3% with MRA, and 9.6% with DCCA. The results

for subject 1 were much worse than those for the other

subjects, which degrades the total accuracy. The relation-

ship of eye direction and head motion history in subject 1

could not be modeled well by the data of other subjects.

Some private habits of viewing or poor eyesight of subject

1 could have affected the results.

We expected that DCCA would show the relationship

of eye direction and head motion well, but the results

of MRA were much better than those of DCCA. The eye

movement containing high frequency components and the

existence of missing or incorrect frames by eye blinking

degrades the accuracy of estimation. It is possible that

a simple model derived better results. In addition, it is

clear that humans can change eye direction without mov-

ing their heads; therefore, some head motion is not related

to eye direction, as we described in the introduction. As

the result that we tried to estimate B and C with fixed S

as the unit matrix, the error was almost same. Therefore,

we concluded that the introduction of projection to low

dimensional space could not contribute to estimate more

accurate regression model.

There were large differences in results among the stim-

ulus images. Figure 9 shows the images that scored

the best and the worst for improving the accuracy of eye

tracking. We generated saliency map with a graph-based

visual saliency (GBVS) algorithm9); and overlaid it on the

stimulus images. The best images have the tendency to

include batch of areas with high saliency values, whereas

the worst images include cluttered small areas. From the

eye tracking data, the worse images tend to attract the

gaze of subjects in not salient regions, and individual sub-

jects saw different regions of the images. The best images

attracted the gaze of many subjects in similar way and

in similar regions, which would contribute more accurate

estimation of eye direction. However, there are excep-

tions within the images representing eye tracking data.

The tendency would differ from much more subjects. We

would like to examine how much the accuracy can be

improved with much more data as future work. In this

work, we at least confirmed that it is possible to improve

the accuracy with head motion history, and MRA is more
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(a) Best stimulus images

(b) Worst stimulus images

Fig. 9 The best and worst stimulus images for improving the accuracy. (Top)
Saliency maps for stimulus images, (middle) eye tracking data of subject
1, (bottom) eye tracking data of subject 4. The cross marks (x) in the
figure represent that we failed to track the eye direction in its previous or
following frames because the subject saw outside of the image, or blinked
his/her eyes. We confirmed that eye tracking data includes high frequency
components and we failed to track the eye direction in many frames.

promising than DCCA for the purpose.

Saccades do not involve the movement of head, there-

fore images with distributed saliency points are difficult

gives worse results in the experiment. This is the limita-

tion of our method. Our method would work well in the

case that saccades are not observed.

5. Discussions and Future Work

We proposed a method for improving eye direction es-

timation by head motion history. In the experiments, the

accuracy of eye tracking was improved with MRA and

DCCA models. As an important future work, we will an-

alyze the results from the view of subjects and stimulus

images for specifying the valid situations. In many ap-

plications, discrete-time eye tracking data may be more
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useful than constant eye tracking data.
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